
This document is downloaded from DR-NTU, Nanyang Technological

University Library, Singapore.

Title Time-multiplexed FPGA overlays with linear interconnect(
Main article)

Author(s) Li, Xiangwei

Citation
Li, X. (2018). Time-multiplexed FPGA overlays with linear
interconnect. Doctoral thesis, Nanyang Technological
University, Singapore.

Date 2018-12-12

URL http://hdl.handle.net/10220/46937

Rights

TIME-MULTIPLEXED FPGA OVERLAYS WITH
LINEAR INTERCONNECT

LI XIANGWEI

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfilment of the requirement for the degree of

Doctor of Philosophy

2018

Acknowledgements

Foremost, I would like to express my heartiest thanks to my advisor Associate Professor Douglas

Maskell for providing me such a wonderful opportunity to explore and work in the field of

reconfigurable computing. His rigorous research attitude and insightful guidance inspired me to

realize the power of critical reasoning and helped me grow into an independent researcher. He

has given me all the freedom to pursue my research, while unobtrusively ensuring that I do not

deviate from the right direction throughout my journey towards this degree. To be honest, this

thesis would not have been possible without his support and advice.

I gratefully acknowledge the contributions of Associate Professor Suhaib Fahmy who has

given me many critical and instructive comments for the papers we have cooperated.

I would also like to express my gratitude to my senior fellow Dr. Abhishek Jain who has pro-

vided numerous help to me and whose great passion in this research field has deeply motivated

me to move forward firmly.

I am profoundly grateful to work as a member of the Hardware and Embedded Systems Lab

(HESL). Thanks to my colleagues and fellow research scholars, especially Dr. Jiang Lianlian,

Dr. Cui Yingnan, Dr. Ye Deheng, Dr. Yang Liwei, Dr. Mao Fubing, Dr. Luo Tao, Dr. Gu

Xiaozhe, Dr. Chen Hao, Miss Gao Yiyi, Mr. Shivaraman Nitin and Miss Rathore Vijeta for their

constant support and encouragement. A special thank must go to our laboratory executive, Mr.

Chua Ngee Tat, for his professional technical assistance.

My heartfelt thanks go to Miss Demi Zhang for her love and understanding during the second

half stressful trip of my Ph.D study.

Last but not the least, I am forever indebted to my family for their unconditional love, trust

and support. I thank them for their continuous patience and encouragement during the toughest

time when I was struggling for the research work. I dedicate this thesis to them.

I

Abstract

The benefits of FPGAs over processor-based systems have been well established, however apart

from specialist application domains, such as digital signal processing and communications, these

platforms have not seen wide usage. Poor design productivity has been a key limiting factor, pre-

venting the mainstream adoption of FPGAs and restricting their effective use to experts in hard-

ware design. Coarse-grained overlay architectures have been proposed as a possible solution for

improving design productivity by offering fast compilation and software-like programmability.

These overlays can either be spatially configured (SC), with one complete functional unit (FU)

allocated to each compute kernel operation and a routing network which is essentially static dur-

ing computation, or, multiplexed, with the FUs and interconnect being shared between kernel

operations.

This thesis examines an overlay architecture based on a simple linear interconnected array

of time-multiplexed (TM) functional units. Sharing the FUs among kernel operations should

significantly reduce the FPGA resource overhead compared to an SC overlay which requires

one FU for each operation along with a fully functional routing network to support connections

to neighboring FUs. The linear interconnected array of TM FUs should also result in reduced

instruction storage and interconnect resource requirements compared to other TM overlays, again

resulting in a more area efficient overlay.

In order to minimize the use of the fine-grained FPGA resource, we make use of the DSP

block to design a fast, fully-pipelined, architecture-aware FU implementation, better targeting

the capabilities of the FPGA. The results presented show a significant reduction of up to 85%

in FPGA resource requirements compared to existing throughput oriented overlay architectures,

with an operating frequency which approaches the theoretical limit for the FPGA device. A

number of architectural enhancements are then proposed to improve the performance of the DSP

block based FU.

II

Abstract III

The overlay subsystem is then integrated into complete hardware accelerator systems, along

with memory interfaces, to an ARM processor or a host CPU. To achieve this, we investigate

two different memory solutions based on AXI and PCIe interfaces, namely Xillybus and RIFFA.

The performance of these hardware accelerators for a range of benchmarks is investigated and

performance results are presented. The proposed AXI-Xillybus-V3 overlay system is also com-

pared to a state-of-art TM overlay, namely VectorBlox MXP. The comparison results show the

AXI-Xillybus-V3 achieves a very area efficient implementation at the expense of around half of

the throughput (limited by AXI-Xillybus using a 32-bit bus compared to the 64-bit bus used by

VectorBlox MXP). The proposed RIFFA-V3 overlay system shows a 3.6× better performance

compared to the PCIe-Xillybus-V3, and a 5.7× better performance than AXI-Xillybus-V3, but

at the cost of a larger BRAM consumption.

Contents

Acknowledegments . I

Abstract . II

List of Figures . VIII

List of Tables . XI

List of Abbreviations . XIII

List of Publications . XV

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Contributions . 5

1.4 Organization . 6

2 Background 8

2.1 Introduction . 8

2.2 High-level Synthesis . 9

2.3 Overlay Architectures . 10

2.4 Processor Based TM Overlays . 14

2.4.1 Soft Processors . 14

2.4.1.1 Single-issue Processors . 15

2.4.1.2 Multi-issue Processors . 16

2.4.1.3 Multithreaded Processors . 16

2.4.2 Parallel Processors . 17

2.4.2.1 Multithreaded Parallel Processors 18

IV

CONTENTS V

2.4.2.2 VLIW Processors . 18

2.4.2.3 Vector Processors . 19

2.4.2.4 Soft GPUs . 22

2.5 CGRA-like TM Overlays . 23

2.5.1 Interconnect topology . 23

2.5.2 CGRA-like Processor Arrays . 24

2.5.3 CGRA-like Medium-grained Overlays 25

2.5.3.1 TM Overlays with Homogeneous FUs 27

2.5.3.2 TM Overlays with Heterogeneous FUs 28

2.6 Summary . 29

3 Proposed Overlay 32

3.1 Introduction . 32

3.2 Programmable Pipelines . 33

3.2.1 Architecture Description . 35

3.2.2 FU Microarchitecture . 36

3.2.3 Overlay Control and Functionality . 42

3.3 Compiling to the Overlay . 44

3.4 Experimental Evaluations . 52

3.5 Summary . 56

4 Architectural Enhancements 57

4.1 Introduction . 57

4.2 Architectural Enhancements . 60

4.2.1 Rotating Register File . 60

4.2.2 Replicating the Stream Datapath . 62

4.2.3 FU Write-back . 64

4.2.4 Comparison of the New FU Architectures 66

4.3 Compiling to the Overlay . 67

4.4 Experimental Evaluation . 72

4.5 Summary . 77

VI

5 System Integration 78

5.1 Introduction . 78

5.2 Available Solutions for Memory Interfaces . 79

5.2.1 AXI bus-based Solutions . 79

5.2.2 PCIe-based Solutions . 80

5.3 Overlay Integration . 81

5.3.1 Xillybus . 82

5.3.2 RIFFA . 83

5.4 Experimental Evaluations . 84

5.4.1 AXI-Xillybus System . 85

5.4.1.1 AXI-Xillybus Loopback test 85

5.4.1.2 AXI-Xillybus based Linear TM Overlay Accelerator 86

5.4.1.3 Results and Comparisons . 87

5.4.2 PCIe System . 92

5.4.2.1 PCIe-Xillybus Loopback test 92

5.4.2.2 PCIe-Xillybus based Linear TM Overlay Accelerator 93

5.4.2.3 RIFFA Loopback test . 94

5.4.2.4 RIFFA based Linear TM Overlay Accelerator 95

5.4.2.5 Results and Comparisons . 97

5.5 Discussion . 100

5.6 Summary . 101

6 Conclusions and Future Work 102

6.1 Summary of Contributions . 103

6.1.1 An Area-Efficient TM Overlay with Linear Interconnect 103

6.1.2 Architectural Enhancements for the Proposed Overlay 103

6.1.3 Overlay Accelerator Systems based on AXI or PCIe Interface 104

6.2 Future Work . 104

6.2.1 Exploring More Applicable Interconnects 104

6.2.2 Developing Better Instruction Schedules 105

6.2.3 Improving the Memory Interfaces . 105

CONTENTS VII

6.2.4 Python Productivity for the Overlays . 106

APPENDICES 107

A Example Benchmark DFGs [1–3] 107

References 112

List of Figures

2.1 Traditional FPGA design flow. 9

2.2 A typical overlay tool flow. 12

2.3 Typical overlay topologies. 24

3.1 The ‘gradient’ benchmark. 35

3.2 A linear TM overlay. 36

3.3 The proposed time-multiplexed functional unit. 38

3.4 DSP48E1 primitive. [4] . 41

3.5 Overlay scalability results on Zynq platform. 42

3.6 Back-pressure control circuit. 43

3.7 Flow chart of overlay functionality. 44

3.8 Initialization of the overlay. 50

3.9 Simulation result of kernel ‘gradient’. 51

3.10 Number of FUs required for the benchmarks. 53

3.11 Area comparison for the benchmarks. 54

3.12 Compute efficiency comparison for the benchmarks. 55

4.1 Average compute efficiency in MOPS/eSlice. 57

4.2 Two kinds of DFGs. 59

4.3 FU enhancement: V1. 61

4.4 Rotating register file. 62

4.5 FU enhancement: V2. 63

4.6 FU enhancement: V3-V5. 65

4.7 Simulation result of kernel ‘gradient’. 70

VIII

LIST OF FIGURES IX

4.8 Data flow graph of the ‘qspline’ benchmark. 74

4.9 V1 and V2 overlay scalability on Zynq XC7Z020. 75

4.10 Throughput, latency and compute efficiency for the benchmarks. 76

5.1 The proposed overlay accelerator system. 83

5.2 Xillybus framework. 84

5.3 RIFFA framework. 85

5.4 AXI-Xillybus 32-bit loopback FIFO connection. 86

5.5 AXI-Xillybus loopback structure. 87

5.6 Xillybus single-thread program in C. 88

5.7 Xillybus multi-threading program in C. 89

5.8 Linear overlay integrated with AXI-Xillybus. 90

5.9 AXI-Xillybus loopback throughput. 90

5.10 Performance comparison for the benchmarks using a transfer size of 1M words. . 91

5.11 PCIe-Xillybus loopback structure. 93

5.12 Linear overlay integrated with PCIe-Xillybus. 93

5.13 RIFFA loopback block diagram. 94

5.14 RIFFA FSM control for RX/TX. 95

5.15 RIFFA host program in C. 96

5.16 Linear overlay integrated with RIFFA. 97

5.17 FSM control for RIFFA based overlay system. 98

5.18 PCIe-Xillybus loopback throughput. 98

5.19 RIFFA loopback throughput. 99

5.20 Performance comparison for the benchmarks. 100

A.1 DFG of ‘chebyshev’ benchmark. 107

A.2 DFG of ‘mibench’ benchmark. 108

A.3 DFG of ‘qspline’ benchmark. 108

A.4 DFG of ‘sgfilter’ benchmark. 109

A.5 DFG of ‘fft’ benchmark. 109

A.6 DFG of ‘kmeans’ benchmark. 109

A.7 DFG of ‘mm’ benchmark. 110

X

A.8 DFG of ‘spmv’ benchmark. 110

A.9 DFG of ‘stencil’ benchmark. 110

A.10 DFG of ‘poly5’ benchmark. 110

A.11 DFG of ‘poly6’ benchmark. 111

A.12 DFG of ‘poly7’ benchmark. 111

A.13 DFG of ‘poly8’ benchmark. 111

List of Tables

2.1 Selected overlay architectures. 13

2.2 Soft processors (32-bit). 14

2.3 Selected CGRA-like overlays. 26

2.4 A summary of selected TM overlays. 31

3.1 Theoretical ZedBoard interface bandwidths. 34

3.2 Area and frequency with different FIFO implementations. 36

3.3 Instruction format. 39

3.4 Truth table of the wr en signal. 43

3.5 DFG description of the compute kernel ‘gradient’ from Figure 3.1(b). 45

3.6 First 48 cycles of the schedule with II=11. 46

3.7 Instructions for kernel ‘gradient’ . 48

3.8 DFG characteristics of benchmark set. 52

3.9 Area and throughput comparison. 54

3.10 Comparison on context configuration data. 55

4.1 New instruction format. 64

4.2 Comparison of different FU designs. 66

4.3 First 44 cycles of the ‘gradient’ schedule (II=6). 69

4.4 First 47 cycles of the ‘qspline’ schedule (II=17). 73

4.5 DFG characteristics of benchmark set. 74

5.1 Theoretical bandwidth of typical memory interfaces. 82

5.2 DFG characteristics of benchmark set. 91

XI

XII

5.3 Area overhead of AXI-Xillybus-V3 and MXP. 92

5.4 RIFFA software APIs in C/C++. [5] . 95

5.5 Area overhead of RIFFA-V3 and PCIe-Xillybus-V3. 100

List of Abbreviations

ALAP As Late As Possible

ALU Arithmetic Logic Unit

API Application Programming Interface

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

CGRA Coarse Grained Reconfigurable Architecture

CLB Configurable Logic Block

CPU Central Processing Unit

DeCO DSP enabled Cone-shaped Overlay

DFG Data Flow Graph

DMA Direct Memory Access

DSP Digital Signal Processing

DySER Dynamically Specialized Execution Resources

FF Flip Flop

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

FU Functional Unit

XIII

XIV

GOPS Giga Operations Per Second

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

IF Intermediate Fabric

II Initiation Interval

LE Logic Element

LUT Lookup Table

NN Nearest Neighbor

PAR Placement and Routing

PR Partial Reconfiguration

RAM Random Access Memory

RISC Reduced Instruction Set Computing

RTL Register Transfer Level

SC Spatially Configured

SIMD Single Instruction, Multiple Data

SoC System on Chip

TM Time Multiplexed

VLIW Very Long Instruction Word

List of Publications

• X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A Time-Multiplexed FPGA Overlay

with Linear Interconnect”, in Proceedings of the Design, Automation and Test in Europe

Conference (DATE), Dresden, Germany, March 2018.

• X. Li, C. F. Phung, D. L. Maskell, “FPGA Overlays: Hardware-based Computing for

the Masses”, in Proceedings of 8th International Conference on Advances in Computing,

Electronics and Electrical Technology (CEET), KL, Malaysia, February 2018.

• A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, “DeCO: A DSP Block Based

FPGA Accelerator Overlay With Low Overhead Interconnect”, in Proceedings of the In-

ternational Symposium on Field Programmable Custom Computing Machines (FCCM),

Washington, DC, June 2016.

• X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “An Area-Efficient FPGA Overlay using

DSP Block based Time-multiplexed Functional Units”, in 2nd International Workshop on

Overlay Architectures for FPGAs (OLAF), Monterey, CA, February 2016.

• A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the DySER Architecture with

DSP Blocks as an Overlay for the Xilinx Zynq”, ACM SIGARCH Computer Architecture

News vol. 43 no. 4, pp. 28-33, 2016.

XV

Chapter 1

Introduction

Modern FPGAs have seen a rapid growth in logic density along with the integration of CPU,

GPU, and other hard silicon modules. To achieve the best accelerator performance, these FP-

GAs are often custom designed, using conventional RTL hardware design techniques, and as

such, have only found mainstream applicability in specific applications such as digital signal

processing and communications. This is because design productivity issues, particularly the dif-

ficulty of hardware design and the long compilation times, are major stumbling blocks to the

widespread adoption of FPGA based accelerators in general purpose computing [6, 7].

Traditionally, text-based hardware description languages (HDL) are used to define the be-

havior of the FPGA. However, getting the best performance from the HDL implementation still

needs a good understanding of the target technology’s capabilities and of basic hardware con-

cepts such as pipelining and synchronization. Additionally, because of the fine granularity of the

FPGA resource, the design compilation time is significant. It takes hours or even days to compile

a very large design due to the fine-grained placement and routing used in the FPGA implemen-

tation. Even for the case where just a few lines of HDL code change, the traditional FPGA CAD

tools have to go through the whole process (including synthesis, mapping, placement and rout-

ing) to generate a new bitstream to program the device. This design process greatly slows down

the development progress of FPGA designs and to some extent, hinders the widespread adoption

of FPGAs.

High-level synthesis (HLS) has been widely adopted by EDA vendors to address some of

1

2

the design productivity issues by providing a higher level of abstraction for the hardware, hiding

much of the low-level detail. Typical HLS tools such as Xilinx Vivado HLS [8], Altera SDK

for OpenCL [9], and UoT LegUp [10] have been developed to interpret a high level language

description of a user application and convert it into low-level RTL. Using HLS tools, there is

less of a requirement for hardware specialization as custom digital logic circuits can be gener-

ated automatically with high performance. However, while HLS techniques alleviate the design

productivity problem to some extent, the back-end flow requires very long compilation times,

particularly for large designs, contributing to long design cycles and the lack of mainstream

adoption of FPGAs by software designers who are used to rapid design iterations.

Because of these long design cycles, researchers have investigated other techniques for im-

proving design productivity. One of these techniques is to use a virtual hardware representation

which overlays the original FPGA fabric, referred to as an overlay architecture (or overlay).

An overlay is a virtual configurable architecture, implemented over the physical fine-grained

FPGA fabric, thus enabling programmability at a higher level of abstraction [11]. Overlay ar-

chitectures promise to tackle the “programmability wall” of FPGAs by avoiding the tedious

fine-grained placement and routing process. Programming an overlay is similar to configuring

an FPGA, except that configuration is also performed at a higher level, typically at the word or

functional block level, rather than at the bit level. While overlays allow high-level programma-

bility with a significantly reduced compilation time, these advantages are not available for free.

They generally come at the cost of a lower performance with significantly more FPGA resource

used than for an equivalent design mapped directly to FPGA. Even flexibility can be sacrificed

as many overlays are specific to a set of applications [12, 13]. As such, a significant research

effort has been applied to reducing the overlay area overhead and improving the throughput.

Overlays can be broadly classified based on the run-time configurability of their FUs. If an

FU has a single fixed functionality at run-time, the overlay is referred to as spatially configured

(SC), while if the FU changes its operation on a cycle-by-cycle1 basis, the overlay is referred to

as time-multiplexed (TM).

In an SC overlay, an FU executes a single arithmetic operation and data is transferred be-

1cycle-by-cycle means at each clock cycle

CHAPTER 1: INTRODUCTION 3

tween FUs over a programmable, but temporally dedicated, point-to-point link. That is, both the

FU and the interconnect are unchanged while a compute kernel is executing. This results in a

fully pipelined, throughput oriented datapath executing one kernel iteration per clock cycle, thus

having an initiation interval (II) [14] between kernel data packets of one. The area overheads of

SC overlays, in particular the large interconnect resource requirements, have limited the use of

these overlays to very small compute kernels in practical FPGA-based systems [15]. This means

that in a typical application a number of different kernels would need to be mapped to the overlay

as the application executes to achieve the best application acceleration. Thus the kernel context

switch time is also an important consideration in the efficient operation of an overlay [16]. Some

of the current overlays utilize partial reconfiguration to reduce the overlay area, in particular the

interconnect resources, by trading off runtime connection flexibility [17]. However, while faster

than a complete FPGA reconfiguration, partial reconfiguration still results in a significant context

switch overhead, which significantly impacts an application’s runtime.

A number of TM overlays have been proposed which share the functional units among kernel

operations in an attempt to reduce overlay resource requirements. Time-multiplexing the FU can

significantly reduce the FU and interconnect resource requirements but at the cost of a higher II

and hence a reduced throughput. The most common time-multiplexed overlays have both a TM

FU and a TM interconnect network. Time-multiplexing the overlay allows it to change its behav-

ior on a cycle-by-cycle basis while the compute kernel is executing, thus allowing sharing of the

limited FPGA resources. However, in many cases the storage requirements for instructions are

very large, resulting in a significant area overhead. This is mainly due to: the scheduling strat-

egy; the execution model; and the design of the overlay architecture, which limits the scalability

of the overlay while also impacting the kernel context switch time. Additionally, many of these

overlays are not architecture-focused and hence the FU operates at a relatively slow frequency.

1.1 Motivation

While existing overlays allow high-level programming with a significantly reduced com-

pilation time, these advantages are not available for free. They are achieved at the cost of a

lower performance and the usage of more hardware resource. Even the flexibility is sacrificed

4

as each overlay is specific to a set of applications. As such, research has focused on reducing

the area overhead and improving the throughput. The most significant factor which affects the

area overhead of an overlay is the virtual routing resources [18, 19], or interconnects between

the different FUs. A number of interconnect strategies exist, with the most common being: is-

land style [7, 15, 18, 20, 21], nearest neighbor (NN) [6, 22], network-on-chip (NoC) [23, 24] and

to a lesser extent linear interconnect [16, 25]. Most (island style, NN, and NoC) are 2-D mesh

structures which are quite similar to the architecture of FPGAs. However, these overlays re-

quire numerous multiplexers as routing resource for the FUs to communicate with each other.

In contrast, a linear or feed-forward interconnect structure which only supports directed acyclic

data flow graphs has a much simpler and more hardware efficient implementation. However this

trades off implementation efficiency against generality.

The work in this thesis attempts to target the area overhead of existing TM overlays, by

developing an area efficient overlay based on time-multiplexed FUs with linear interconnect,

which significantly reduces the hardware requirement while adding just a modest performance

penalty. We show how this overlay can be optimized with various architectural enhancements

to achieve higher throughput without the proportional increment in resource consumption, thus

improving the compute efficiency. To demonstrate the suitability of the overlay as an FPGA

accelerator, the proposed overlays are integrated into complete hardware accelerator systems and

quantitative results of throughput and area are presented. The proposed overlay based accelerator

is then compared with a state-of-the-art TM overlay, VectorBlox MXP, in terms of throughput

and resource usage.

1.2 Objectives

The main research goal of this thesis is to improve the FPGA design productivity by devel-

oping area and performance efficient overlay accelerator systems which can support rapid com-

pilation and just-in-time context switching. We aim to achieve this goal by setting the objectives

as follows:

• Categorize the existing TM overlays and evaluate their computational throughput and the

CHAPTER 1: INTRODUCTION 5

relative FPGA resource consumed along with advantages and disadvantages.

• Design an area-efficient FPGA overlay with a linear connection of highly pipelined time-

multiplexed FUs based on the Xilinx DSP48E1 macro.

• Explore improvements to the compute efficiency of the proposed overlay with a number

of architectural enhancements and a new mapping technique.

• Develop a mapping tool to compile the compute intensive kernels from high level lan-

guage onto the proposed overlays, thus raising the hardware design to a higher level of

abstraction.

• Integrate the overlay subsystems into complete hardware accelerator systems based on two

different memory interface, AXI and PCIe.

1.3 Contributions

This thesis proposes a number of TM overlays with linear interconnect, which target streaming-

based data processing. A number of accelerator systems have been developed by integrating the

overlays with both AXI and PCIe-based memory interfaces. The main contributions of this thesis

are as follows:

• Present a comprehensive literature review of the TM CGRA-like medium-grained over-

lays. The study shows that most of the existing TM overlays suffer from relatively large

area overheads, due to either their underlying processor-like architecture or, for CGRA-

like overlays, due to the routing resources and instruction storage requirements. Reducing

the area overhead for CGRA-like overlays, specifically for the routing network, and uti-

lizing the fast context switch capabilities of these overlays are likely to result in better

usability with corresponding improvements in design productivity.

• Design and implement an area efficient FPGA overlay which uses a linear connection of

time-multiplexed FUs based on the Xilinx DSP48E1 macro. This architecture enables a

significant reduction in the resource overheads compared to other TM overlays due to a

reduction in the instruction storage and interconnect resource requirements, assisted by

6

a fully-pipelined, architecture-aware FU design. While the proposed overlay delivers a

throughput which is 6× to 22× less than the SC DSP-based overlay [7] and Vivado [8]

implementations due to the much larger II, it consumes 85% fewer equivalent slices (eS-

lices) than the DSP-based overlay and achieves 740× faster context switching compared

to the Vivado implementations.

• Propose a number of architectural enhancements such as using a rotating register file

(RRF) in the FU, replicating the stream datapath and adding write-back support to the

FU. The architectural enhancements help reduce the II significantly with just a modest in-

crease in the area overhead, thus improving the compute efficiency. Compared to the orig-

inal version, the modified overlays can achieve up to 2.4× higher throughput in GOPS,

93.7% higher compute efficiency in MOPS/eSlice and a 43.7% lower latency in ns.

• Integrate the proposed overlays into complete hardware accelerator systems, along with

the AXI or PCIe memory interface. The AXI-Xillybus-V3 represents a very area efficient

implementation compared with VectorBlox MXP-V16 [26], at the expense of around half

of the throughput (limited by AXI-Xillybus using a 32-bit bus compared to the 64-bit bus

used by VectorBlox MXP). PCIe-Xillybus-V3 and RIFFA-V3 are proposed for more high-

performance accelerator systems. RIFFA-V3 achieves a throughput of 3.6× higher than

the PCIe-Xillybus-V3, and a throughput of 5.7× higher than AXI-Xillybus-V3, at the cost

of a larger BRAM consumption.

1.4 Organization

The thesis is organized as follows. Chapter 2 presents some FPGA background and the tra-

ditional FPGA design flow, followed by an introduction to two of the emerging approaches to

improve the FPGA design flow, i.e. high-level synthesis and overlay architectures. A comprehen-

sive literature review of the existing TM overlays is presented which categorizes TM overlays

into two groups, processor-based TM overlays and CGRA-like TM overlays. Chapter 3 pro-

poses an area efficient FPGA overlay with linear interconnect. A basic automated mapping tool

is developed, followed by a comparison of the area, throughput and context switch time of our

CHAPTER 1: INTRODUCTION 7

proposed overlay with HLS implementations and existing overlays from the research literature.

Chapter 4 examines the limitations of the proposed linear TM overlay and presents a number of

architectural enhancements to improve the overall performance in terms of throughput, latency,

and compute efficiency. Chapter 5 introduces a complete hardware accelerator system based on

the improved linear TM overlay using two different memory interfaces, Xillybus and RIFFA.

The performance of these hardware accelerators for a range of benchmarks is investigated and

performance results are presented. Comparisons are also made to a state-of-the-art TM over-

lay, namely VectorBlox MXP. Finally, Chapter 6 draws conclusions for the thesis and explores

potential directions for future work.

Chapter 2

Background

2.1 Introduction

Field-programmable gate arrays (FPGAs) are typically comprised of an array of programmable

blocks, which include lookup table (LUT) based logic for implementing general logic functions

as well programmable memories, multipliers, etc., all connected by a programmable routing

network [27]. In current commercial FPGAs, the logic blocks are typically 6-input LUTs and

the routing network is an island-style architecture which consists of channel wires, connection

blocks and switch blocks.

The traditional FPGA design process (as shown in Figure 2.1), is typically based on a register-

transfer level (RTL) description of the circuit, using hardware description languages (HDLs) such

as Verilog and VHDL. The design entry phase may involve the use of intellectual property (IP)

cores provided by the FPGA vendor or other design groups, thus enabling the designer to meet

the design requirements with less effort. However, RTL design requires a good working knowl-

edge of the target technology’s capabilities and of basic hardware concepts such as pipelining and

synchronization to achieve a close to optimal implementation on the FPGA device. The FPGA

design flow (in Figure 2.1) requires a significant amount of simulation and validation at all stages

in the process, which also includes synthesis, placement and routing, and bitstream generation.

A problem identified in any of the simulation steps requires that the designer revert back to the

design entry phase for correction, with changes to just a few lines of HDL code requiring a rerun

8

CHAPTER 2: BACKGROUND 9

of the whole process to generate a new bitstream. Additionally, the design cycles are relatively

slow due to the fine granularity of the FPGA resources, which can result in the ”Place & Route”

process requiring hours (or even days) for a very large application. This design process greatly

slows down the development progress of FPGA designs and to some extent, even hinders the

widespread adoption of FPGAs. Many solutions are emerging to improve the FPGA design

flow, thus alleviating some of the design cycle time concerns. These ongoing developments are

generally focusing on two approaches: high-level synthesis and overlay architectures.

Design Entry
(HDL)

FPGA
Bitstream

Behavioral
Simulation

Post-Synthesis
Simulation

Post-
Implementation

Simulation

Synthesis

Place & Route

Vendor IPs
User IPs

Requirements

Figure 2.1: Traditional FPGA design flow.

2.2 High-level Synthesis

The evolution of high-level synthesis (HLS) traces back to the late 1970s, and it has gone

through three generations from research to industry adoption during this time. The first gener-

ation (1980s to early 1990s) and second generation (mid-1990s to early 2000s) HLS tools had

10

limited commercial success, mainly due to the choice of input languages and the inadequate

quality of results [28]. However, the third generation HLS tools (early 2000s to now) have had

better success, achieving higher levels of industry adoption, as they are able to model behavior

at a higher level, while better targeting both dataflow and control domains.

The latest HLS techniques have been developed to translate a high level description of an

application into custom logic, hiding much of the low-level FPGA detail. Typical HLS tools,

such as Xilinx Vivado HLS [8], Altera SDK for OpenCL [9], and UoT LegUp [10] have been

developed to interpret the high level language description of a user application and convert it into

low-level RTL. Using HLS tools, there is less of a requirement for the designer to have a detailed

hardware specialization as custom digital logic circuits can be generated automatically with high

performance.

However, while HLS techniques alleviate the design productivity problem to some extent, it

does not change the back-end flow (specifically the placement and routing process), which as

mentioned before can require very long compilation times, contributing to long design cycles

and the lack of mainstream adoption of FPGAs by software designers who are used to rapid

design iterations [29]. Because of these long design cycles, researchers continue to examine

other techniques for improving design productivity.

2.3 Overlay Architectures

Another way to improve productivity is to exploit the coarser granularity of modern digital

circuits. The heterogeneous architecture of modern FPGAs provides opportunities to make use

of the coarse-grained modules such as DSP blocks and block RAMs. One of these techniques is

to use a virtual hardware representation which overlays the original FPGA fabric, referred to as

an overlay architecture (or overlay).

An overlay is defined as a virtual configurable architecture, implemented over the physical

fine-grained FPGA fabric, thus enabling programmability at a higher level of abstraction [11].

Overlay architectures promise to enhance the programmability of FPGAs by raising the design

abstraction layer and avoiding the tedious fine-grained placement and routing process. Program-

CHAPTER 2: BACKGROUND 11

ming an overlay is similar to configuring an FPGA, except that configuration is also performed

at a higher level, typically at the word and functional block level, rather than at the bit level.

As such, the mapping tools for overlays can quickly generate an application bitstream in just a

few seconds and configure the overlay in just a few microseconds, significantly faster than for

fine-grained FPGA. Figure 2.2 shows a typical automatic mapping tool flow targeting an overlay.

The overlay is firstly designed using the FPGA vendors design tools, and a bitstream for con-

figuring the FPGA is generated, as shown in the RHS dashed box of Figure 2.2. The remainder

of the tool chain generates an overlay configuration based on a user application. As the overlay

is located at a layer between the user application and the underlying physical FPGAs, it is not

necessary to regenerate the FPGA bitstream for different target applications. If an application

changes, all that a designer needs to do is to regenerate the new configuration for the overlay

using the mapping tool flow (shown on the LHS of Figure 2.2) and reprogram the overlay. This

flow (which is more like a software programming flow) achieves thousands of times reduction in

the design cycle time compared to a traditional FPGA CAD flow [16].

While overlays allow high-level programmability with a significantly reduced compilation

time, these advantages are not available for free. They generally come at the cost of a lower

performance with significantly more FPGA resource used than for an equivalent design mapped

directly to FPGA. Even flexibility can be sacrificed as many overlays are specific to a set of

applications [12, 13]. As such, a significant research effort has been applied to reducing the

overlay area overhead and improving the throughput.

Overlays can be broadly classified based on the run-time configurability of their FUs. If an FU

has a single fixed functionality at run-time, the overlay is referred to as spatially configured (SC),

while if the FU changes its operation on a cycle-by-cycle basis, the overlay is referred to as time-

multiplexed (TM). Table 2.1 lists some overlays categorized in terms of FU and interconnect

configuration. From Table 2.1, it can be seen that overlays with SC FUs and SC interconnect

networks [6,7,15,18–21,25,30] comprise a significant group. In an SC overlay, a single operation

node is mapped to an individual FU and data is shifted between FUs over a programmable, but

temporally dedicated, point-to-point link. That is, the FU and interconnect configuration are

fixed while the kernel executes. The benefit of an SC overlay is that kernel execution achieves an

initiation interval (II) [14] of one, with throughput just determined by the operating frequency of

12

DFG Generation

High Level Languages

Instruction
Scheduling

Overlay

FPGA

Bitstream
Generation

Overlay RTL

Overlay Architecture
Specification

Overlay
Configuration

Configuration
Generation

FPGA
Bitstream

Overlay generation using

existing vendor tools

Figure 2.2: A typical overlay tool flow.

the overlay.

However, the area overheads of SC overlays, in particular their large interconnect resource

requirements, have limited the practical use of these overlays in FPGA-based systems to very

small compute kernels [15]. This means that a number of different kernels would need to be

reconfigured to the overlay for a large application to achieve the best application acceleration.

Thus the overlay context switch time (the time required to switch between executing kernels)

is also an important consideration in the efficient operation of an overlay [16, 39]. Some of

the current overlays utilize partial reconfiguration to reduce the overlay area, in particular the

CHAPTER 2: BACKGROUND 13

Table 2.1: Selected overlay architectures.

Year Overlay FU Interconnect
Name SC TM SC TM NoC

2005 SPREE [31] X

2006 QUKU [30] X X

2010 IF [18] X X

2011 VDR [25] X X

2011 Heracles [32] X X

2012 ZUMA [33] X X

2012 Octavo [34] X

2012 reMORPH [17] X X

2013 VCGRA [19] X X

2013 CARBON [35] X X

2013 MXP [26] X

2013 SCGRA [36] X X

2013 TILT [37] X X

2015 DSP-based [7] X X

2016 DeCO [38] X X

2016 GRVI Phalanx [23] X X

interconnect resources, by trading off runtime connection flexibility [17]. However, while faster

than a complete FPGA reconfiguration, partial reconfiguration still results in a significant context

switch overhead, which will impact an application’s runtime if multiple kernels are used.

As there is always a trade-off between area and speed in hardware design, a number of re-

search groups have shifted their attention to overlays which share the functional units among

kernel operations in an attempt to reduce overlay resource requirements. Sharing or time-

multiplexing the FU can significantly reduce the FU and interconnect resource requirements but

at the cost of a higher II and hence a reduced throughput. TM overlays can be generally divided

into two categories: processor based overlays, and coarse-grained reconfigurable architecture

(CGRA) like overlays. They are comprised of an array of interconnected FUs, which execute

multiple operations on a cycle-by-cycle basis, similar to conventional processor cores [40]. Al-

though the development of TM overlays is still at the primary stage, some of the existing works

have shown great potential in tuning the compute density (throughput per area) and achieving

rapid hardware context switching compared to the SC alternatives. In the next section, we review

14

the current state-of-the-art relating to TM overlays.

2.4 Processor Based TM Overlays

Most successful TM FPGA overlays are based on processor implementations. These im-

plementations range from simple single-issue processors, through multithreaded processors, to

parallel processors and processor arrays. Overlays based on a processor implementation have the

advantage of a well-known, well-designed instruction set architecture (ISA) which makes them

easy to use, however, they tend to utilize a large amount of FPGA resource with a significant

power consumption.

Table 2.2: Soft processors (32-bit).

Year Name Device Fmax Area

2005 CUSTARD [41] Virtex-2 30 MHz 2400 Slices
2005 UT Nios [42] Stratix 77 MHz 3000 LEs
2005 SPREE [31] Stratix II 82 MHz 1200 LEs
2007 Leon3 [43] Virtex-2 125 MHz 3500 LUTs
2010 MB-LITE [44] Virtex-5 65 MHz 1450 LUTs
2010 Leon4 [45] RT4G150 150 MHz 4000 LUTs
2012 iDEA [46] Virtex-6 453 MHz 335 LUTs
2012 Octavo [34] Stratix IV 550 MHz 900 ALUTs
2016 GRVI [23] UltraScale 375 MHz 320 LUTs

2.4.1 Soft Processors

A soft processor generally refers to a processor architecture which can be implemented on

FPGA, which then allows the ISA to be customized to suit a specific application. FPGA ven-

dors provide commercial soft processors such as Xilinx MicroBlaze [47] and Altera Nios II [48],

implementing a conventional MIPS-like architecture for software portability. These industrial

soft processors allow non-hardware experts to better target FPGAs with dedicated tools such as

Xilinx EDK and Altera Eclipse. However, these implementations are not portable between dif-

ferent FPGA vendor devices and their RTL source code is not freely available. To overcome this,

open source clones of these commercial soft processors have been developed, such as the perfor-

CHAPTER 2: BACKGROUND 15

mance centric UT Nios [42] and the area-efficient MB-LITE [44]. While these implementations

are open source and can be customized to a specific application, their ISAs are not. To address

this issue, a number of open source soft processors with free ISAs such as OpenSPARC [49],

OpenRISC [50], Plasma [51], RISC-V [52], Leon3 [43] and Leon4 [45], were developed by in-

dustrial or independent groups. A recent survey of open source soft processors [53] showed that

apart from Leon3, most had a larger area overhead and provided less performance compared to

MicroBlaze and Nios II. Table 2.2 lists the latest versions of some typical soft processors in the

last decade.

2.4.1.1 Single-issue Processors

Many of the earlier soft core processors were single-issue processors because of their sim-

plicity and area efficiency. These processors were to some extent constrained by the limited

resources available in earlier generations of FPGA devices. MicroBlaze [47], Nios II [48], Open-

RISC [50] and Plasma [51] are all examples of single-issue processors. Single-issue processors

also tend to have fewer pipeline stages than multi-issue (superscalar) processors [54]. Some

other single-issue processors include:

SPREE: The Soft Processor Rapid Exploration Environment (SPREE), was developed to au-

tomatically generate synthesizable HDL implementations of soft processor architectures from

textual descriptions of the ISA and datapath [31], facilitating the microarchitectural exploration

of soft processors. The SPREE processor with a 3-stage pipeline demonstrates 9% less area

and 11% speedup in wall-clock-time compared to the Nios II family of commercial soft proces-

sors. By customizing the microarchitecture to specific software applications, the tuned version of

SPREE provides an average improvement of 11.4% over the fastest-on-average general purpose

processor in terms of compute efficiency [55]. The complexity of SPREE can be reduced by

using functional component abstractions, however, some practical issues such as combinational

loops, false paths, and multi-cycle paths, which affect the functionality and performance of the

soft processor, may arise due to the careless use of these components.

iDEA: iDEA [46,56] is a lightweight soft processor based on the Xilinx DSP48E1 primitive and

was developed to address the resource consumption issue while better targeting the underlying

16

FPGA architecture. The 9-stage pipelined design with no data forwarding outperforms MicroB-

laze in both resource consumption (a 59% reduction in LUTs with an 18% increase in FFs) and

speed (a 92% increase in fmax). To reduce the execution time caused by NOP insertion due to

data hazards, data forwarding approaches applicable to the DSP48E1 primitive, such as internal

loopback and external forwarding, were explored, resulting in an improvement of up to 25% for

a set of benchmarks [57].

While iDEA was designed as a soft processor to handle integer operations, it cannot fully sup-

port 32-bit multiplication because of the limited width of the multiplier inputs in the DSP48E1

(25×18 bits). Only a single DSP block is used to implement the soft processor, however, as

there are hundreds of DSP blocks available in the modern FPGAs, making better use of these

resources within a multi-processor system would significantly improve the performance for large

compute kernels.

2.4.1.2 Multi-issue Processors

While most of the early generation of soft processors were single-issue cores, multi-issue or

superscalar single processor implementations have also been developed. One of the best exam-

ples is the LEON3 processor [45], based on the 32-bit SPARC V8 processor architecture, which

was developed for space applications and is available as a soft core for FPGAs. Another exam-

ple is the Intel Nehalem soft processor core [58] which was developed for emulation purposes

and uses five FPGAs while running at a frequency of just 520 kHz. Unfortunately, a superscalar

architecture requires significant hardware complexity to dynamically extract the instruction par-

allelism which when implemented in FPGA results in very high hardware costs.

2.4.1.3 Multithreaded Processors

While single-issue processors are expected to run at a higher frequency with a pipelined archi-

tecture, their area-efficiency and instruction-per-cycle (IPC) count can be improved significantly

with minimal extra complexity to support multithreading [59]. UTMT II [60] and MT-MB [61]

are two typical soft processors which support multithreading on the Altera Nios II/e and Xilinx

MicroBlaze core respectively. UTMT II achieved a 25% LE area reduction compared with Nios

CHAPTER 2: BACKGROUND 17

II/e, while MT-MB achieved a peak performance of 5× over that of MicroBlaze. Apart from

the extension of commercial cores, there are a number of independent research efforts towards

providing multithreading support on soft processors, such as CUSTARD [41] and Octavo [34].

CUSTARD: The Customizable Multithreaded Processor (CUSTARD), was one of the first cus-

tomizable multithreaded soft processors, supporting a parameterizable number of threads, thread-

ing type, datapath bitwidths and custom instructions [41, 62]. CUSTARD is a RISC proces-

sor which has a fully bypassed architecture with a 4-stage pipeline. When implemented on

an XC2V2000 FPGA and compared with MicroBlaze using five typical benchmarks, the CUS-

TARD processor achieved an average speedup of 2.41× across all benchmarks with custom

instructions. However, CUSTARD, and its extended version [62], only achieved a clock fre-

quency of 30 MHz to 50 MHz, which is far less than the 100 MHz achieved by the MicroBlaze

soft processor. Additionally, the custom instruction speedup came at a penalty of two times the

area consumption and less I/O support compared to MicroBlaze.

Octavo: The Octavo soft processor [34] is a multithreaded 10-stage pipelined architecture de-

signed to operate at the theoretical maximum BRAM frequency (550 MHz) on a Stratix IV

device. A method of self-loop characterization was adopted to collapse the conventional regis-

ter/cache/memory hierarchy into one unified entity, which is beneficial to absorb the propagation

delays and simplify the ISA. To support fast multiplication, a fast multiplier which consists of

two half-pumped DSP blocks was designed to overcome the hardware timing restriction of 480

MHz.

In summary, although single-core soft processors allow the benefits of software programma-

bility and hardware re-usage, their performance is still significantly less than that of either hard

processors or dedicated hardware accelerators, and cannot meet the requirements of very high

speed applications. In order to improve the throughput, there is an increasing amount of research

work exploring multi-core systems of soft processors with efficient routing technologies.

2.4.2 Parallel Processors

The sequential processing of single-issue soft processors has limited their use to specific

lower performance applications. When large scale applications are considered, parallel com-

18

puting, using single instruction, multiple data (SIMD) execution or other parallel processing

techniques, may be required.

2.4.2.1 Multithreaded Parallel Processors

The Octavo soft processor [34] was further extended to support SIMD by duplicating the

datapath with a shared instruction stream [63]. SIMD-Octavo was compared with VectorBlox

MXP [26] (discussed in Subsection 2.4.2.3) and operates at about double the clock frequency

of MXP and generally achieves better performance (for an equal number of lanes) in terms of

execution time, area, and area-delay product. It has been claimed that the execution time of

multi-lane SIMD-Octavo is better than hand-crafted Verilog HDL, but requires one to two orders

of magnitude more hardware resource [63].

2.4.2.2 VLIW Processors

Very long instruction word (VLIW) processors have been proposed to exploit instruction

level parallelism (ILP) by executing different operations on multiple FUs simultaneously [64].

TILT: The 32-bit floating point TILT overlay [12, 65], was proposed as an FPGA-based VLIW

processor comprised of multiple floating point FUs with configurable pipeline depths. To en-

hance the throughput, multiple TILT cores can be instantiated, working in parallel with a single

shared instruction memory. This architecture is referred to as TILT-SIMD. TILT has a separate

256-bit memory fetcher unit which allows for data transfer between up to 8 TILT cores and the

off-chip DDR memory. The TILT overlay was evaluated for a set of five application benchmarks

against Altera OpenCL HLS implementations. The TILT overlay was able to achieve an operat-

ing frequency over 200 MHz, which is close to that of the HLS implementations, with an area

overhead of less than 2× for the same throughput.

Currently, the TILT-System is not customized to a general class of kernel applications, and as

such, a kernel update for a different application requires instruction rescheduling, with an associ-

ated FPGA reconfiguration, resulting in a context switch time of 38 seconds on average. Another

drawback of the TILT overlay is that, even though TILT is more flexible than OpenCL HLS for

implementing very small designs, it has less compute density compared to the OpenCL imple-

CHAPTER 2: BACKGROUND 19

mentation. This problem can be solved by customizing the number of FUs and their functionality

for specific applications.

2.4.2.3 Vector Processors

While it remains a problem for soft processors to scale their performance, soft vector pro-

cessors (SVPs) are able to exploit data-level parallelism. They are able to explore the trade off

between performance and area, with a hybrid approach which shares the benefits of traditional

vector processing and modern SIMD mode. Most of the proposed SVPs have a similar archi-

tecture, with a scalar soft processor acting as the controller for multiple vector lanes executing

custom instructions on a local memory [66]. SVPs can achieve a significant speedup over soft

processors by effectively unrolling loops into vector operations. However, there are a number

of obstacles limiting the widespread adoption of SVPs. These include, the centralized vector

register file complexity, the difficulty in implementing precise exceptions for vector instructions,

and the on-chip vector memory system cost [67].

A number of SVP designs, including VESPA [68], VIPERS [69], VEGAS [70], VENICE [71],

and MXP [26], have been proposed. VESPA and VIPERS were developed in parallel as the first

generation of FPGA-centric SVPs, with VEGAS, which better utilizes the on-chip FPGA mem-

ory, being the second generation. VENICE is the latest version, targeting high frequency and

low area, and led to the first commercial SVP, referred to as VectorBlox MXP.

VESPA: VESPA was proposed as a MIPS-based processor with a VIRAM [72] compatible vec-

tor coprocessor, which results in a system combining the advantages of portability, scalability,

and flexibility [68]. VESPA is portable across FPGA platforms, though the original design tar-

geted Stratix III. The VESPA prototype achieved an average speedup from 1.8× (2-lane) to

6.3× (16-lane) over the scalar processor on EEMBC benchmarks [73]. The flexibility of VESPA

makes it possible to trade off area savings (up to 70%) by adjusting the vector lane length and

width. To better target the FPGA, an improved VESPA with support for vector chaining and het-

erogeneous lanes [74] was implemented on a Stratix III FPGA. The modified VESPA achieved

up to 34% better compute efficiency relative to VESPA in terms of performance-per-area for the

full set of EEMBC benchmarks.

20

VIPERS: Similar to VESPA, VIPERS consists of a single-threaded (Nios II-compatible) scalar

core referred to as UTIIe, a memory interface unit, and a vector processing unit [69]. Three

typical data-intensive applications were used as benchmarks to demonstrate the capabilities of

VIPERS. The same three applications were also implemented as hardware accelerators for the

Altera Nios II/s processor using the C-to-Hardware (C2H) Compiler [75]. Compared to Nios II,

VIPERS demonstrated a scalable speedup ranging from 3× to 29×, at the cost of a 6× to 30×

area penalty. An improved version of VIPERS [76] offers double the vector registers and several

new instructions (compared to VESPA), and is less strict about VIRAM compliance. Based on

the benchmarks in [69], VIPERS with 16 lanes can achieve up to 25× better performance with

a modest 14× area increase compared to the base Nios II processor. It is possible to achieve a

further 30% area savings by customizing VIPERS to the benchmarks, equal to 6× the logic area

of the Nios II/s processor implementation.

Although both VESPA and VIPERS provide a wide range of granularity from 8-bit to 32-

bit, the vector engine must be built to fit the largest width if mixed-width data processing is

required. As a result, byte-sized data needs to be zero-extended or sign-extended to the full

width, which unnecessarily adds overhead to the instruction memory and register files. Addi-

tionally, as the vector register file is connected to an on-chip memory (VIPERS) or on-chip data

cache (VESPA), the memory/cache width must be large enough to support the traditional vector

load/store operations. However, the amount of on-chip memory is limited by the capacity of a

particular FPGA.

VEGAS: Though VESPA and VIPERS demonstrated the scalability and feasibility of SVPs,

they were not specifically targeted to the underlying FPGA architecture. As such, a new SVP ar-

chitecture, VEGAS, was presented as a vector core with a Nios II/f processor [70]. The most sig-

nificant differences between VEGAS and the previous SVPs, is the use of a cacheless scratchpad

memory and a fracturable ALU which can support byte, halfword or word operations efficiently,

according to the data width. Instead of conventional vector load/store instructions, VEGAS

adopted direct memory access (DMA) read/write commands to achieve better storage efficiency

and less memory latency. VEGAS can achieve up to 2.8× better performance than VESPA and

3.1× better than VIPERS in terms of throughput-per-area, and outperforms a 2.66GHz Intel

X5355 processor on the integer matrix multiply benchmark.

CHAPTER 2: BACKGROUND 21

Despite the high performance VEGAS achieves, there are some drawbacks to the design

which result in an area/ performance overhead. Firstly, it is cumbersome to track and spill values

from the 8-entry vector address register file (VARF), which also consumes additional ALMs and

FFs. Secondly, while the alignment network grows super-linearly with the number of vector

lanes, only one single alignment network is implemented on VEGAS, which may introduce a

performance penalty if the operands are unaligned.

VENICE: Based on the architecture of VEGAS, VENICE was proposed to maximize the through-

put of SVPs with a small number of vector lanes [71]. While VEGAS achieved its best perfor-

mance/area at 4-8 lanes, VENICE was tailored to 1-4 lanes without sacrificing performance. Re-

moval of the vector address register file, adding a new conditional implementation, and stream-

lining the instructions, are the three major differences which reduce the area requirement and the

complexity of programming, compared to VEGAS. 2D/3D vector instructions and operations on

unaligned vectors were adopted to further improve the performance. VENICE can achieve over

2× better throughput-per-area than VEGAS, and a speedup of 5.2× higher than the fastest Nios

II/f soft processor.

VENICE is much more area-efficient and easier to program compared with previous SVPs

and further improves on the VEGAS ALU utilization. Since VENICE is designed as a small

and fast SVP, the problem of efficiently integrating multiple VENICE components with high

performance and interconnect simplicity remains a future problem.

MXP: The VectorBlox MXP was developed as a commercial IP core which can be connected

with Altera or Xilinx FPGAs via Avalon or AXI interfaces [26]. It is similar in design to

VENICE, but with added features such as fixed-point arithmetic, 2D-DMA support, and a C++

object based application programming interface (API) for higher level programming. MXP can

operate at over 200 MHz on a Stratix IV device with less than 16 vector lanes. A 64-lane

configuration demonstrated a speedup of up to 918× that of a Nios II/f processor on matrix mul-

tiplication. Custom vector instructions (CVIs) were introduced for the latest SVPs to integrate

streaming pipelines into the datapath with a minimum area overhead [77]. CVI-optimized SVPs

achieved a 7200× speedup and over 100× improvement in terms of performance-per-ALM,

compared to Nios II/f.

22

In general, SVPs achieve significant performance gains for data parallel applications. How-

ever, the scalability of SVPs is limited by the number of vector lanes, which is determined by

the hardware resources on the FPGA. While increasing the number of vector lanes significantly

increases the throughput, it also leads to clock frequency degradation. Additionally, compiler

support for these processors is still at the primary stage as the repository of common operations

and data types needs to be further improved.

2.4.2.4 Soft GPUs

Graphics processing units (GPUs) have a many-core architecture with considerable parallel

processing capabilities. In general, GPUs and vector processors have many similarities with both

supporting SIMD-style parallelism.

FlexGrip: FlexGrip [78] is a soft GPU based on the Nvidia G80 architecture targeting the Xilinx

ML605 platform and provides direct CUDA compilation and execution. FlexGrip follows a

single instruction multiple thread (SIMT) model with an instruction fetched and simultaneously

mapped onto multiple scalar processors (SPs). FlexGrip with 32 SPs achieves a peak speedup

of 30× compared to MicroBlaze, but with a significant area overhead, consuming 96% of the

available LUTs.

MIAOW: MIAOW [79] is an open source RTL implementation of the AMD Southern Islands

GPU ISA, which is compatible with OpenCL applications. The complete system was imple-

mented on a Xilinx VC707 evaluation board requiring a considerable amount of FPGA resource

(195K LUTs and 137 BRAMs). MIAOW was validated by comparing it with commercial GPUs

in terms of area, power, and performance.

FGPU: A GPU-like SIMT soft processor, referred to as FGPU [80], was proposed as a flexible

solution for software tasks. The VHDL implementation of FGPU did not use any FPGA specific

IP cores or FPGA primitives, making it highly portable and customizable. It has a mixed ISA

supporting both MIPS instructions and OpenCL functions. A speedup of 48.5× over MicroBlaze

was achieved for a range of benchmarks on the Xilinx ZC706 FPGA board, with a 17.7× area

overhead. To achieve high performance, FGPU is designed with an 18 stage pipeline. Due to the

complexity of the compute units, an 8 compute unit version of FGPU consumes 124K LUTs on

CHAPTER 2: BACKGROUND 23

the ZC706, corresponding to 57% of the available resource.

SCRATCH: An application-aware soft GPU, referred to as the SCRATCH framework [81], was

developed as an upgraded version of the MIAOW GPU architecture. The main contribution

of the SCRATCH system is the MIAOW-based architecture optimization to support additional

instructions and the SCRATCH trimming algorithm which removed unnecessary architectural

functionality to improve performance. Similar to MIAOW, SCRATCH was evaluated on Xil-

inx Virtex 7 FPGAs. By applying architecture trimming along with multithread and multi-core

parallelism, SCRATCH was able to achieve a peak speedup of 260× with a 250× better energy-

efficiency compared to the original MIAOW system. In addition to the improvement in through-

put and energy-efficiency, a significant reduction in FPGA resource was observed, specifically a

36% reduction in LUTs and a 41% reduction in FFs.

2.5 CGRA-like TM Overlays

Coarse-grained reconfigurable architectures (CGRAs) have been extensively researched due

to their enhanced scalability, performance and power efficiency compared to CPUs. CGRAs

typically fall within one of two classes: processor-centric arrays which are made up of individual

processors connected via programmable interconnect; and CGRAs with coarse/medium-grained

processing elements (also called medium-grained processing arrays).

2.5.1 Interconnect topology

Irrespective of the computational element (be it a processor or a dedicated processing ele-

ment), CGRA-like overlays are characterized by an array structure of computational elements

connected using programmable interconnect. A number of interconnect strategies exist, with the

most common being: island style [7, 15, 18, 20, 21], nearest neighbor (NN) [6, 22], network-on-

chip (NoC) [23, 24] and to a lesser extent linear interconnect [16, 25], as shown in Figure 2.3.

Other interconnect strategies are possible, including circuit switched [82] networks, but these

typically consume significant hardware resource and are less suited for FPGA-based overlays.

There are also variations in the more common interconnect strategies. For example, for NN, al-

24

ternative typologies include torus [22], mesh plus [83] and fully connected [84], while for NoC,

many different typologies exist [24].

Island style and NN interconnects are a 2-D mesh structures which to some extent have a

similar architecture to the interconnect on FPGAs. However, these interconnect strategies require

a considerable amount of the FPGA routing to implement and as a result consume a significant

amount of the FPGA resource [85]. In contrast, the resource requirement for a linear interconnect

is significantly less because of its feed-forward array structure, which comes at the expense of

reduced flexibility.

SB

CB

CBCB

CB

FU FU

FUFU

FU

FU

SB

CB

SB CBCB SB

CB

CB FUFU FUCB

CB

CB

(a) Island style

FU FU FU

FU

FU

FU FU

FU FU

(b) Nearest neighbor

FU

R R R

FU FU

FU FU FU

FU FU FU

R R R

R R R

(c) NoC torus

FU FU FU

FU FU FU

FU FU FU

MUX

MUX

(d) Linear

Figure 2.3: Typical overlay topologies.

2.5.2 CGRA-like Processor Arrays

Large CGRA-like processor arrays have seen a resurgence in recent years due to the higher

capacity of modern FPGAs. This larger FPGA capacity, along with more efficient NoC imple-

mentations [24] has meant that they are able to accommodate more complex designs. These

processor arrays have similarities to ASIC-based processor-centric CGRAs. Some examples

include:

Heracles: Heracles [32] is an open-source integer-based 7-stage MIPS-III processor array with

a 2D-mesh topology, which consists of a NoC architecture for data communication. Synthesis

results showed that one processor element with cache memory consumed 5562 LUTs and 2695

FFs on a Virtex-5 LX330T, running at a frequency of 155 MHz. The Heracles virtual-channel

router consumed 2058 LUTs, 2806FFs and operated at a frequency of 71 MHz. Compared

to the classic unbalanced fat-tree [86] topology, the proposed virtual-channel router consumed

only 1.7% of the fabric logic, with a 2.3× higher clock frequency. However, LUT consumption

CHAPTER 2: BACKGROUND 25

became the bottleneck when scaling due to the attached memory subsystem, thus Heracles was

restricted to a 4×4 array on Virtex-5.

GRVI Phalanx: GRVI Phalanx [23] is a massively parallel overlay based on an FPGA-efficient

implementation of the RISC-V [52] soft processor. The GRVI processor uses just 320 LUTs and

runs at a frequency of up to 375MHz on a Kintex UltraScale FPGA. Multiple GRVI processors

with shared memory and local interconnect, are formed as clusters, which efficiently communi-

cate with each other via a Hoplite NoC [24]. Implementations with 400 and 1680 RISC-V cores

on a Kintex UltraScale KU040 and a Virtex UltraScale+ VU9P have been reported. Currently

there is minimum tool support for this platform with no application performance comparisons

with other overlays.

120-core MIPS Overlay: A 120-core MIPS overlay [87] using on an optimized implementa-

tion of the µaptiv MIPSfpga [88], based on the silicon-tested microAptiv MIPS processor, was

developed. The design achieved a significant FPGA resource reduction, requiring just 30% of

the ALMs and 18% of the M20K RAM blocks compared to the original µaptiv MIPSfpga de-

sign [88]. This was achieved by replacing the complex instruction/data cache with dedicated

scratchpads, adopting DSP blocks for multiplication and using a NoC-specific modification to

the decoder. The improved MIPS processors with a Hoplite NoC [24] increased the maximum

array size from 30 to 120 cores on a DE5-NET board, while achieving a higher frequency (94

MHz).

2.5.3 CGRA-like Medium-grained Overlays

CGRAs with medium-grained processing elements have a number of advantages compared

to CPUs, including better scalability, performance and power efficiency [89]. Additionally, com-

pared to fine-grained reconfigurable architectures, such as FPGAs, which typically consist of

an array of logic blocks at the bit-level (or a small number of bits), CGRAs are reconfigurable

at the word-level (8-bit, 16-bit, 32-bit, etc.). In CGRAs, the processing elements are typically

much larger than the FPGA’s fine-grained lookup tables (LUTs), and can be an arithmetic logic

unit (ALU) or word-level multiplier, or even a DSP primitive. This coarse granularity results

in a reduction in the configuration memory, the configuration time, and the placement and rout-

26

ing complexity, compared to fine-grained FPGAs [90]. Although there has been a significant

amount of CGRA research over the last few decades, only a few CGRAs have been commercial-

ized, mainly because they are less flexible compared to FPGAs and lack a well-defined design

flow [30].

An alternative to an ASIC CGRA is the CGRA-like FPGA overlay, which implements a

CGRA as a virtual configurable architecture on top of a reconfigurable FPGA. Initially, mapping

CGRAs to FPGA was performed to demonstrate their functionality before ASIC implementa-

tion. More recently, specific dedicated CGRA-like FPGA overlays were developed mainly to

improve the design productivity of FPGA. Many of these initial CGRA-like overlays were more

throughput-oriented SC overlays which mapped each operation to a single FU to achieve an II

of one. However, as mentioned earlier, these overlays were relatively small due to the limited

hardware resources available in the underlying FPGA and were unable to accommodate larger

compute kernels. Recently, researchers have shifted to more area-efficient overlay architectures

which are able to time-multiplex the operations to an FU on a cycle-by-cycle basis. This makes

it possible to map larger application kernels to the overlay, but at the cost of throughput. A

summary of some of the TM CGRA-like overlays is given in Table 2.3.

Table 2.3: Selected CGRA-like overlays.

Year Name Granularity Device Fmax FPGA Resource

Arithmetic Size

2010 Heracles [32] 32-bit
Integer

Virtex 5
155 MHz
4×4

12K LUTs, 8.8K FFs

2011 MIN Overlay [91] 8/32/64-bit
Integer & FP

Virtex 6
100 MHz
30

22K LUTs, 4.8K FFs,
40 DSPs

2011 CARBON [35] 32-bit
Integer

Stratix III
150 MHz
2×2

3K ALMs, 517 FFs,
15Kb BRAM, 4 DSPs

2012 reMORPH [17] 32-bit
Integer

Virtex 6
400 MHz1

40
196 LUTs, 41 FFs, 3
BRAMs, 1 DSP2

2013 SCGRA [36] 32-bit
Integer

Zynq-7000
250 MHz
2×2

5K LUTs, 9K FFs, 50
BRAMs, 12 DSPs

2016 GRVI Phalanx [23] 32-bit
Integer

UltraScale
375 MHz
10×5×8

177K LUTs, 1200
BRAMs

2017 MIPS Overlay [87] 32-bit
Integer

Stratix V
94 MHz
60×2

2.4K ALMs, 2.1K FFs,
2 DSPs, 3 M20Ks2

1 Reported Fmax is only for an FU.
2 Reported Resource is only for a single FU.

CHAPTER 2: BACKGROUND 27

2.5.3.1 TM Overlays with Homogeneous FUs

Time-multiplexed CGRA-like overlays with Homogeneous FUs have the advantage that they

can be more easily tiled to the FPGA architecture due to their regularity. Additionally, applica-

tions can be more easily scheduled as operations can be arbitrarily mapped to FUs. However,

having only homogeneous FUs can restrict application flexibility. Some examples include:

CARBON: CARBON [35] is a CGRA-like overlay which was implemented as a 2×2 array of

tiles on an Altera Stratix III FPGA. Each tile has an FU with a programmable ALU and instruc-

tion memory, supporting up to 256 instructions. An FU consumed 3K ALMs, 517 FFs, 15.6Kb

BRAM and 4 DSP blocks, achieving an operating frequency of 150 MHz. Compared to the other

TM overlays discussed here, CARBON has a large resource requirement with a relatively slow

speed which limits the scalability of the architecture. Additionally, the BRAMs were not effec-

tively used to read the instruction memory, which results in the need for an additional bypass

register to avoid the extra latency.

reMORPH: The reMORPH overlay [17] better targeted the FPGA fabric, with an FU consum-

ing 1 DSP Block, 3 block RAMs, 196 LUTs and 41 registers. This low footprint makes it

possible to implement around 40 tiles on the Xilinx Spartan 6 LX45 FPGA. A reMORPH tile

uses the Xilinx DSP primitive as a 5-stage pipelined ALU with a BRAM as its instruction mem-

ory, which ensures a high operating frequency (400MHz). To reduce the overhead due to routing

and multiplexers, the reMORPH FU does not use decoders resulting in a 72-bit-wide instruc-

tion memory (supporting up to 512 instructions) which causes an over utilization of BRAMs,

thereby limiting the possible size of this overlay. Tiles are interconnected using an NN style of

non-programmable interconnect, which is adapted using partial reconfiguration at runtime, and

hence changing between application kernels is relatively slow (that is the overlay has a large

hardware context switch time).

SCGRA: The SCGRA overlay [36] was proposed to address FPGA design productivity, demon-

strating a 10× to 100× reduction in compilation time compared to the AutoESL HLS tool.

Application specific SCGRA overlays were subsequently implemented on the Xilinx Zynq plat-

form [22], achieving a speedup of up to 9× higher than the standalone Zynq ARM processor.

The FU used in the Zynq-based SCGRA overlay operates at 250 MHz and consists of an ALU,

28

multi-port data memory (256×32 bits) and a customizable depth instruction ROM (Supporting

72-bit wide instructions) which results in the excessive utilization of BRAMs. As the full FPGA

bitstream needs to be reconfigured for a compute kernel change, very fast context switching

between applications is not possible.

Although the SCGRA overlay allows for different size implementations, there is a significant

performance drop for larger implementations due to the following reasons. Firstly, the higher

BRAM requirement for instruction memory means that there needs to be a trade-off in the num-

ber of BRAMs for the I/O buffer, which has a negative effect on data reuse. Secondly, a larger

SCGRA overlay will increase the routing cost between PEs, therefore reducing the compute per-

formance. Finally, the operating frequency drops as the overlay size increases, resulting in a

degradation of the overall performance.

2.5.3.2 TM Overlays with Heterogeneous FUs

Time-multiplexed CGRA-like overlays with Heterogeneous FUs have the advantage that they

can support a wider range of applications, including mixed integer and floating point applica-

tions. An example is the MIN overlay:

MIN Overlay: The MIN overlay consists of heterogeneous FUs, which are connected by a

global multi-stage interconnection network (MIN) [91]. The heterogeneous FUs can support up

to 64-bit floating point computations. MIN uses a global interconnect network instead of the

traditional 2-D array topology, which significantly reduces the routing resource requirements,

resulting in better hardware resource utilization. Compared with the crossbar network in TILT,

the proposed two parallel blocking MINs reduce the cost complexity from O(n2) to O(n log n).

A number of different parameterized architectures, chosen to evaluate the impact of the num-

ber and types of FU, memory and I/O, were implemented on a Virtex 6 FPGA. The smallest

architecture (called A1) has 30 FUs and a 64 I/O global network and consumes around 1% of

registers, 4% of DSPs and 15% of LUTs, while running at a frequency of 100MHz. A heuristic

scheduling, placement and routing algorithm was used and could achieve just-in-time compila-

tion in less than 300ms. While MIN has relatively good FPGA resource utilization, the LUT

usage due to the routing network in larger designs will eventually become the limiting factor.

CHAPTER 2: BACKGROUND 29

Additionally, in some cases, routing fails due to missing registers which could be overcome by

adding a register file in some of the FUs.

2.6 Summary

TM overlays for FPGA are reasonably mature with processor based TM overlays being better

accepted compared to CGRA-like overlays. This is because the processor based overlays have

the advantage of well understood ISAs and easily accessible compilation tool chains making

application development much easier for non-hardware designers. Furthermore, processor based

overlays using parallel processing techniques, such as multi-issue, multithreading, VLIW, and

vector processing, have been developed and shown to improve overlay performance. However,

these overlays suffer from similar problems to processors implemented directly in silicon, such

as being complex with significant resource utilization and power consumption, which tends to

negate some of the designer productivity advantages (such as their software programmability).

On the other hand, CGRA-like TM FPGA overlays have only really appeared within the last

several years. These overlays are again targeted at improving FPGA designer productivity, and

are better tailored towards area-efficient higher speed processing than processor-based overlays,

although they still suffer from a lower speed and higher FPGA resource utilization than direct

HDL- or HLS-based application implementation on FPGA. Recent CGRA-like overlays better

utilize the coarse-grained modules present in modern FPGAs, such as DSP blocks and BRAMs.

These overlays are particularly targeted towards the acceleration of small compute intensive

loops [22].

A selection of the TM overlays from the literature (both processor-based and CGRA-like) are

summarized in Table 2.4. Table 2.4 categorizes the different overlays based on the overlay type

and provides an indication of the computational throughput and the relative FPGA resource con-

sumed. So that the overlay’s implementation technology does not overly impact the throughput

and resource utilization, both these metrics have first been nominally normalized to that of a Vir-

tex 7 implementation. The throughput is normalized by multiplying by the ratio of the maximum

Virtex 7 BRAM frequency divided by the maximum BRAM frequency of the original target de-

vice, while the resource consumption is determined by considering the total system resource

30

utilization (adjusted to account for technology changes, such as the transition from 4-LUTs to

6-LUTs) divided by the number of cores/FUs. The advantages and disadvantages of the different

overlay types are also presented.

The review of the literature indicates that TM CGRA-like medium-grained overlays show

potential benefits over other overlays. This is because time-multiplexing the overlay allows

it to change its behavior, cycle by cycle, during the compute kernel execution, thus allowing

better sharing of the limited FPGA resource. However, most of the TM overlays described

previously suffer from relatively large area overheads, due to either their underlying processor-

like architecture or, for CGRA-like overlays, due to the routing resources and instruction storage

requirements. Reducing the area overhead for CGRA-like overlays, specifically for the routing

network, and utilizing the fast context switch capabilities of these overlays are likely to result in

better usability with corresponding improvements in design productivity. Additionally, there is

scope for improving the FPGA resource utilization and overlay operating speed. These issues,

along with the development of an overlay based coprocessor tightly coupled to a host processor

for application acceleration will be examined in future chapters.

CHAPTER 2: BACKGROUND 31

Ta
bl

e
2.

4:
A

su
m

m
ar

y
of

se
le

ct
ed

T
M

ov
er

la
ys

.

N
am

e
O

ve
rl

ay
Ty

pe
T

hr
ou

gh
pu

t
R

es
ou

rc
e

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es

C
U

ST
A

R
D

[4
1]

Si
ng

le
-i

ss
ue
µ

p
V

er
y

lo
w

M
ed

iu
m

W
el

l
un

de
rs

to
od

pr
oc

es
so

r
IS

A
;

go
od

to
ol

su
pp

or
t;

ea
sy

to
us

e;
ar

ea
ef

fic
ie

nt
;

hi
gh

fle
xi

bi
lit

y
w

he
n

co
n-

fig
ur

in
g

th
e

co
re

an
d

tu
ni

ng
to

sp
ec

ifi
c

ap
pl

ic
at

io
ns

R
el

at
iv

el
y

lo
w

pe
rf

or
m

an
ce

;
re

la
tiv

el
y

hi
gh

po
w

er
co

n-
su

m
pt

io
n;

So
m

e
pr

oc
es

so
r

de
si

gn
s

at
te

m
pt

to
be

ge
ne

ra
l

an
d

do
no

tm
ak

e
go

od
us

e
of

a
sp

ec
ifi

c
FP

G
A

ar
ch

ite
ct

ur
e

U
T

N
io

s
[4

2]
Si

ng
le

-i
ss

ue
µ

p
L

ow
M

ed
iu

m
SP

R
E

E
[3

1]
Si

ng
le

-i
ss

ue
µ

p
L

ow
L

ow
L

eo
n3

[4
3]

Si
ng

le
-i

ss
ue
µ

p
L

ow
M

ed
iu

m
M

B
-L

IT
E

[4
4]

Si
ng

le
-i

ss
ue
µ

p
V

er
y

lo
w

L
ow

L
eo

n4
[4

5]
Si

ng
le

-i
ss

ue
µ

p
M

ed
iu

m
M

ed
iu

m
iD

E
A

[4
6]

Si
ng

le
-i

ss
ue
µ

p
M

ed
iu

m
V

er
y

lo
w

SI
M

D
-O

ct
av

o
[6

3]
M

T
Pr

oc
es

so
r

H
ig

h
L

ow
W

el
l

un
de

rs
to

od
pr

oc
es

so
r

IS
A

;
go

od
/a

de
qu

at
e

to
ol

su
pp

or
t;

hi
gh

pe
rf

or
m

an
ce

;
su

pp
or

ts
pa

ra
lle

lis
m

;
lo

w
po

w
er

co
ns

um
pt

io
n

R
es

ou
rc

e
hu

ng
ry

;
hi

gh
er

co
de

co
m

pl
ex

ity
;

in
ef

fic
ie

nt
if

th
e

da
ta

ca
nn

ot
be

ex
ec

ut
ed

in
a

hi
gh

ly
pa

ra
lle

lm
an

ne
r

T
IL

T
[1

2]
V

L
IW

Pr
oc

es
so

r
M

ed
iu

m
H

ig
h

M
X

P
[2

6]
V

ec
to

rP
ro

ce
ss

or
H

ig
h

M
ed

iu
m

FG
PU

[8
0]

So
ft

G
PU

H
ig

h
V

er
y

hi
gh

SC
R

A
T

C
H

[8
1]

So
ft

G
PU

V
er

y
hi

gh
V

er
y

hi
gh

H
er

ac
le

s
[3

2]
C

G
R

A
-l

ik
e
µ

p
A

rr
ay

M
ed

iu
m

M
ed

iu
m

W
el

l
un

de
rs

to
od

pr
oc

es
-

so
rI

SA
;h

ig
h

pe
rf

or
m

an
ce

;
hi

gh
sc

al
ab

ili
ty

;
ef

fic
ie

nt
N

oC
ro

ut
in

g
ne

tw
or

k

L
im

ite
d

to
ol

su
pp

or
t;

re
-

so
ur

ce
hu

ng
ry

;
hi

gh
po

w
er

co
ns

um
pt

io
n;

la
ck

of
ap

-
pl

ic
at

io
n

be
nc

hm
ar

k
ev

al
ua

-
tio

ns

G
RV

IP
ha

la
nx

[2
3]

C
G

R
A

-l
ik

e
µ

p
A

rr
ay

V
er

y
hi

gh
V

er
y

lo
w

M
IP

S
O

ve
rl

ay
[8

7]
C

G
R

A
-l

ik
e
µ

p
A

rr
ay

H
ig

h
M

ed
iu

m

M
IN

O
ve

rl
ay

[9
1]

C
G

R
A

-l
ik

e
M

G
O

ve
rl

ay
M

ed
iu

m
L

ow
M

od
er

at
e

pe
rf

or
m

an
ce

;
lo

w
ar

ea
co

ns
um

pt
io

n;
lo

w
po

w
er

co
ns

um
pt

io
n,

m
ak

es
go

od
us

e
of

co
ar

se
-g

ra
in

ed
m

od
ul

es
su

ch
as

D
SP

s
an

d
B

R
A

M
s

L
im

ite
d

to
ol

su
pp

or
t;

la
rg

e
ro

ut
in

g
ar

ea
ov

er
he

ad
;

lo
ng

co
nt

ex
t

sw
itc

hi
ng

tim
e;

on
ly

su
ita

bl
e

fo
r

ac
ce

le
ra

tio
n

of
sm

al
l

ke
rn

el
s

(e
xc

ep
t

SC
-

G
R

A
);

la
ck

of
a

pi
pe

lin
e-

aw
ar

e
sc

he
du

lin
g

st
ra

te
gy

C
A

R
B

O
N

[3
5]

C
G

R
A

-l
ik

e
M

G
O

ve
rl

ay
L

ow
/M

ed
iu

m
L

ow

re
M

O
R

PH
[1

7]
C

G
R

A
-l

ik
e

M
G

O
ve

rl
ay

M
ed

iu
m

V
er

y
lo

w

SC
G

R
A

[3
6]

C
G

R
A

-l
ik

e
M

G
O

ve
rl

ay
M

ed
iu

m
L

ow

Chapter 3

Proposed Overlay

3.1 Introduction

As discussed in Chapter 2, a number of overlays have been proposed which share functional

units among kernel operations in an attempt to reduce overlay resource requirements. This time-

multiplexing (TM) of the overlay means that it can change its behavior on a cycle-by-cycle basis

while the compute kernel is executing [12,17,35,36], thus allowing sharing of the limited FPGA

resources. However, in many other TM overlays, the storage requirements for instructions are

very large, resulting in a significant area overhead. This is mainly due to: the scheduling strategy;

the execution model; and the design of the overlay architecture, and limits overlay scalability

while also impacting the kernel context switch time. Additionally, many of these overlays are

not architecture-focused and hence the FU operates at a relatively slow frequency.

This chapter introduces our preliminary investigations into a resource efficient linear time-

multiplexed overlay, acting as a processing pipeline to address the concerns identified above. An

area efficient FPGA overlay architecture is developed that uses a linear connection of time-

multiplexed FUs based on the Xilinx DSP48E1 macro. This architecture enables a signifi-

cant reduction in the resource overheads compared to other TM overlays due to a reduction

in the instruction storage and interconnect resource requirements, assisted by a fully-pipelined,

architecture-aware FU design. The proposed 8-stage pipelined FU runs at a frequency of 325

MHz on a Xilinx Zynq device while consuming a very small resource footprint of 1 DSP block,

32

CHAPTER 3: PROPOSED OVERLAY 33

160 LUTs and 293 FFs. The FUs are then daisy-chained using a direct connection between FUs,

thus minimizing the resource required by the connection network. The main contributions can

be summarized as follows:

• An architecture using a linear connection of FUs to form a processing pipeline which is

able to support the execution of feed-forward DFGs. This architecture results in a signifi-

cant reduction in both the FU and interconnect compared to other overlays.

• A scheduling methodology which reduces the number of instructions that need to be stored

in each FU thus enabling an FU with a very small memory footprint.

• A 32-bit area-efficient, time-multiplexed FU with a very small instruction memory built

around a fully pipelined DSP block using just a few memory primitives.

• An architecture with a significantly reduced context switching time, thus enabling rapid

application kernel changes.

The work presented in this chapter has been published in

• X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “An Area-Efficient FPGA Overlay using

DSP Block based Time-multiplexed Functional Units”, in 2nd International Workshop on

Overlay Architectures for FPGAs (OLAF), Monterey, CA, February 2016.

• A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the DySER Architecture with

DSP Blocks as an Overlay for the Xilinx Zynq”, ACM SIGARCH Computer Architecture

News vol. 43 no. 4, pp. 28-33, 2016.

3.2 Programmable Pipelines

Heterogeneous system on programmable chip (SoPC) platforms, such as the ARM-based

Xilinx Zynq, have been successfully deployed in embedded systems which require significant

computing performance within a tight power budget, such as when pre-processing at high data

rates is required. While these applications have tended to use the FPGA fabric as a static accel-

erator, it does open up the possibility for including smaller compute engines, integrated into a

34

larger accelerator system, such as the hypervisor-based hardware virtualized execution and man-

agement environment [39], where a rapidly configurable overlay could co-exist with both static

and partially reconfigurable accelerators on the FPGA fabric. The advantage of such a system is

that the FPGA hardware is able to support fast compilation, software-like programmability and

run-time management, with a relatively small configuration data size and fast non-preemptive

hardware context switching.

As discussed previously, an SC overlay can deliver maximum performance by replicating

the compute kernel datapath and executing one iteration every clock cycle, but has a significant

hardware resource overhead. Another problem is the mismatch between the hardware processing

throughput and the off-chip bandwidth. For example, Figure 3.1(a) shows a small computational

kernel, the ‘gradient’ benchmark from the medical imaging domain [92], while Figure 3.1(b)

shows the resulting data flow graph. This simple benchmark executing on a 32-bit SC overlay

operating at a modest 150 MHz has an off-chip bandwidth requirement of 4.8 GB/s (0.8 GB/s

per I/O). This is greater than the Xilinx Zynq external DDR bandwidth of 4.2 GB/s, as detailed

in Table 3.1 [93]. While this memory bottleneck could be solved using a streaming interface

directly between the off-chip sensors and the FPGA fabric, or directly between an external Dy-

namic random-access memory (DRAM) and the FPGA fabric, it does show that time-sharing the

FU among multiple operations of the kernel, using a CGRA-like TM overlay, may be a feasible

alternative. This is particularly the case when an overlay is used withing a larger system with

multiple cores all sharing the external I/O bandwidth. In this case, a small TM overlay, with its

lower resource utilization, higher II and reduced throughput, is likely to be better matched to the

limited off-chip bandwidth.

Table 3.1: Theoretical ZedBoard interface bandwidths.

Interface description Ports Bandwidth (GB/s)

AXI Accelerator Coherency Port (ACP) 1 2.4
AXI General Purpose (GP) 4 4.8
AXI High Performance (HP) 4 9.6
External DDR Memory 1 4.2
On-chip Memory (OCM) 1 3.6

However, as discussed in Chapter 2, existing CGRA-like TM overlays are still relatively inef-

CHAPTER 3: PROPOSED OVERLAY 35

(a) C source code

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

(b) Data flow graph

Figure 3.1: The ‘gradient’ benchmark.

ficient, and hence there is scope for improvement, particularly with regards to resource utilization

and speed. One way to improve the performance, as mentioned in Chapter 2, is to simplify the

interconnect topology of the CGRA-like overlay. Thus, instead of the multiple FUs connected

by a relatively heavyweight island style or NN interconnect network, as in many of the existing

SC [6, 7, 15, 21, 85, 94] and TM [12, 17, 35, 36] overlays, it should be possible to utilize a simple

linear interconnect structure, similar to that used in the highly efficient SC DeCO overlay [38].

If this linear interconnection could be further reduced to a simple direct connection between

FUs, it would significantly reduce the hardware resource requirement, while still allowing appli-

cation mapping by allocating DFG nodes from the same scheduling time step to the individual

FUs. Additionally, using a simple low resource, but highly pipelined FU (similar to the iDEA

soft core processor [56]) would better target the FPGA. This combination of linear intercon-

nect and time multiplexed FU presents an interesting design space which will likely result in

high throughput programmable architectures with reduced II and significantly reduced hardware

resource requirements. In the remainder of this chapter we examine such an overlay.

3.2.1 Architecture Description

We propose to build a linear array of FUs as a programmable processing pipeline where each

FU can be time multiplexed among operations present in a single scheduling stage of an ASAP

sequenced data flow graph. The 32-bit pipeline consists of a streaming data interface made up

36

of Distributed RAM acting as a FIFO, which feeds into a cascade of time-multiplexed FUs, with

another Distributed RAM based FIFO at the pipeline output, as shown in Figure 3.2.

Time-multiplexed

Functional Unit

FIFO channel

Time-multiplexed

Functional Unit

Programmable

ALU
Register File

Instruction

Memory

DSP Block

Time-multiplexed

Functional Unit

FIFO channel

Figure 3.2: A linear TM overlay.

As the Xilinx design tools provide four different methods to generate the FIFO IP core,

we explore all possible implementations, and list the area requirement and maximum operating

frequency in Table 3.2. From this table, each implementation consumes a similar amount of

slice registers (≈2.0%) and LUTs (≈2.5%). However, the Block RAM based implementation

and Built-in FIFO implementation require 1 extra RAMB36E1 primitive for the input and output

datapaths. Since the Distributed RAM based FIFO has the highest operating frequency with a

comparable area overhead, we choose this implementation as the FIFO channel.

Table 3.2: Area and frequency with different FIFO implementations.

FIFO Implementation No. of FFs No. of LUTs No. of RAMB36E1s Fmax

Block RAM 2174 (2.0%) 1342 (2.5%) 2 (1.4%) 285MHz
Distributed RAM 2240 (2.1%) 1391 (2.6%) 1 (0.7%) 303MHz
Shift Register 2226 (2.1%) 1463 (2.7%) 1 (0.7%) 294MHz
Built-in FIFO 2154 (2.0%) 1292 (2.4%) 2 (1.4%) 241MHz

3.2.2 FU Microarchitecture

The proposed FU is a simplification of the iDEA soft processor [46], which is a DSP based

fully functioning CPU optimized to achieve maximum speed on a Xilinx FPGA. However, our

CHAPTER 3: PROPOSED OVERLAY 37

FU does not require this full functionality as data is moved through the overlay in a quasi-

streaming fashion. As such, there is no need for large instruction or data memory blocks based

on BRAM primitives, as is seen in other CGRA-like overlays [17, 36]. Instead, a smaller in-

struction memory (IM) can be used. Examining the typical overlay benchmark examples from

the literature [1, 2], it was determined that a depth 32 IM could be used as the identified bench-

marks could all fit within this constraint. As such, a 32×32-bit IM can be implemented using

LUTRAM based RAM32M primitives, resulting in a 5-bit instruction counter (IC) and a 5-bit

program counter (PC). Similarly, a 32×32-bit register file (RF) is instantiated using RAM32M

primitives. The ALU of an FU is based on a DSP block with three stage pipelining for maximum

speed. Initially, a tag is required for each instruction to match with its corresponding FU as con-

figuration data (e.g. instructions) is streamed through the array from FU to FU. It is customized

as an 8-bit tag combined with the 32-bit instructions, which can support up to 256 FUs. This

dedicated design results in some simplifications to the FU architecture, with a reduction in the

number of pipeline stages compared to iDEA [46].

The proposed FU has an execution pipeline with 8 stages in total, with a latency of 1-clock

cycle per stage. These are divided as follows: 2 stages for instruction fetch, 2 stages for operand

indexing, 3 stages for instruction execute, and 1 stage for data transmission to the next FU. The

lightweight FU is optimized for FPGA implementation, based on design macros, such as the

DSP48E1 and the LUTRAM based RAM32M primitives, found in modern Xilinx FPGAs. The

main components consist of an instruction memory (IM), register file (RF) and DSP-based ALU,

shown as the three dashed blocks in Figure 3.3. As the FU operates as a feed-forward data flow

processing element, data memory is not required in the functional unit.

38

D
S
P

 B
lo

c
k

R
A

M
32

M

R
eg

is
te

r

F
il

e

D C

C
o
n
tr

o
l

G
en

er
a
to

r

R
A

M
32

M

In
st

ru
ct

io
n

M
e
m

o
ry

d
at

a_
in

v
al

id
_
in

d
at

a_
o
u
t

v
al

id
_

o
u
t

M
In

p
u
t
M

ap

L
o
g
ic

in
st

_
lo

a
d

in
st

_
lo

a
d

P
CIC

T
a
g

M
at

c
h
in

g

4
0

3
21

1 3
2 1

8
32

1 1

55

32

5 5

5
5 5

21
2
1

1
1

4
7

5

1
1

1

1

40
in

st
ru

c
ti
o
n

in
st

ru
c
ti
o
n

in
st

_
fe

tc
h

in
st

_
ex

ec

Fi
gu

re
3.

3:
T

he
pr

op
os

ed
tim

e-
m

ul
tip

le
xe

d
fu

nc
tio

na
lu

ni
t.

CHAPTER 3: PROPOSED OVERLAY 39

(a) Instruction Memory

The instruction memory is used to store the list of instructions that are performed in the DFG

scheduling stage and contains the arithmetic and any data bypass instructions needed to feed

input data to the next scheduling stage. At initialization, or upon a hardware context switch, a

40-bit data word, made up of a 32-bit wide instruction (the kernel’s context) and an 8-bit tag

(used to match an instruction with its corresponding FU), is clocked to the FU instruction port

from a separate 40-bit wide context memory implemented externally using BRAMs. The FU

instruction ports are daisy-chained together, allowing for efficient configuration of the complete

overlay. A 5-bit instruction counter (IC) is used to keep track of the instructions written to the FU.

There are two types of instruction: arithmetic and data bypass (used to forward data to the next

stage). The FU architecture supports a 32 entry IM implemented using RAM32M primitives.

The RAM32M primitive is an efficient memory primitive implemented in LUTRAMs, which

can be configured as a 32 deep 2-bit wide quad port (3 read, 1 read/write), 32 deep 4-bit wide

dual port (1 read, 1 read/write) or a 32 deep 8-bit wide single port (1 read/write) memory. Since

the IM writes occur only once at context initialization, we multiplex the read and write addresses

enabling us to use the single port variant which uses just four RAM32M primitives to instantiate

the 32×32 IM. An extra pipeline stage is added to the output of the RAM32M primitive to ensure

that it operates at close to its maximum frequency. The inst fetch signal (at the output of the IM

block) represents the instruction which has been read from the IM block, and appears 2 clock

cycles after the program counter (PC) initiates the instruction fetch, as shown in Figure 3.3.

A description of the 32-bit internal instruction format, using an ADD R3, R5 operation as an

example, is shown in Table 3.3. From this table, it can be seen that a 32-bit instruction has four

sections, the 19-bit DSP block configuration, the 2-bit input map multiplexing, two 5-bit source

operand addresses, with the last bit reserved for future use. Upon the completion of the context

write cycle, each FU contains the necessary instructions in its IM and the instruction count in its

IC register.

Table 3.3: Instruction format.
FU part ALU Control Input Map Control RF Control Reserved
Signals alumode inmode opmode cea2 ceb2 usemult split immop src-1 src-2

No. of bits 4 5 7 1 1 1 1 1 5 5 1
Locations [31:28] [27:23] [22:16] 15 14 13 12 11 [10:6] [5:1] 0

ADD R3, R5 0000 00000 0110011 1 1 0 1 0 00011 00101 0

40

(b) Register File

The RF is used to hold the 32-bit data streamed from the input FIFO, or the previous FU

stage. When valid data is available from the input FIFO (or previous stage), the data counter

(DC) controls the data transfer to the RF using simulated load instructions. Data transfer is

initiated by the valid in signal going high, indicating that data is being streamed into the FU.

For each transfer, the DC is incremented resulting in data being written into the RF in sequential

locations. When the data transfer is complete and all data is available in the register file the

valid in signal goes low. The control generator then asserts a control signal which triggers the

IM to start sending operand addresses to the RF and configuration data to the DSP block, with

the specific instruction to be executed determined by the PC. The RF requires two read ports and

one write port, but as reads and writes do not occur simultaneously we again multiplex one port

enabling both read and write operations. Thus the 32 entry RF requires 8 RAM32M primitives

configured as a 1 read/write and 1 read port memory (32-deep by 4-bit wide). The address bus is

shared between the DC and the source-1 address using a multiplexer at the input of the address

register. Similar to the IM, there is an extra pipeline register at the output of the RAM32M-based

RF to ensure maximum operating frequency. Thus, it takes 2 cycles to source the operands from

the RF for a specific instruction (inst fetch). Hence, the inst exec signal to the DSP block and

the input map logic requires two additional register stages to ensure synchronization, as shown

in Figure 3.3. After executing all the instructions related to the scheduling stage, including the

data output to the next stage, or output FIFO, the DSP block flushes its internal pipeline and the

program counter resets, allowing the same sequence of instructions to be issued over and over

again, instead of needing to store a large set of instructions for each cycle. Thus, each FU only

needs to execute a small number of instructions, allowing for a small IM and RF design.

(c) ALU

The other major block in the FU is the ALU, which consists of a DSP48E1 primitive, two

32-bit registers, one at the C input port for pipeline balancing and another at P output port, and

an 19-bit register for holding the ALU configuration data. The DSP48E1 primitive consists of

a pre-adder, a multiplier, an ALU, four ports for input data, and one port for output, as shown

in Figure 3.4, and can be configured to support various operations such as multiply, add, sub,

bitwise OR, etc. These functions are determined by a set of dynamic control inputs that are

CHAPTER 3: PROPOSED OVERLAY 41

wired to the configuration registers. As instruction decoders are not used, the instruction format

must explicitly specify the read addresses and the modes of operation of the DSP block directly,

allowing us to achieve a relatively high frequency.

MULT
25x18

Dual B
Register

Dual A, D and
Pre-Adder

C

M

X

Y

Z

INMODE

CARRYIN

OPMODE

CARRYINSEL

B

A

D

C

BCOUT* ACOUT*

0

1
0

0

BCIN* ACIN* PCIN* MULTSIGNIN*CARRYCASCIN*

CREG/C
Bypass/Mask

PATTERNDETECT

PATTERNBDETECT

P

CARRYOUT

PCOUT*MULTISIGNOUT*

CARRYCASCOUT*

ALUMODE
P

P

P

P

48

18

30

25

48

5

48

7

3

18

30

4 1

18

18 30

18

A:B

30

48

25

17-bit Shift

17-bit Shift

4

4

48

* These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Figure 3.4: DSP48E1 primitive. [4]

The FU of Figure 3.3 was synthesized and mapped to a Xilinx Zynq XC7Z020-1CLG484C

using Xilinx ISE 14.7. A frequency of 325 MHz was achieved while consuming 1 DSP block,

160 LUTs and 293 FFs (or 1 DSP block and 81 slices). A complete pipeline consisting of 8 FUs

and the 2 I/O FIFOs, consumed 8 DSP blocks, 808 LUTs and 1077 FFs (that is 8 DSP blocks and

459 slices) representing less than 4% of the Zynq FPGA resources while operating at a slightly

reduced frequency of 303 MHz. Figure 3.5(a) and 3.5(b) shows the resource consumption and

Fmax of the proposed processing pipeline as we increase the number of FUs in the pipeline.

When a single FU is mapped to a more capable XC7VX485T Virtex 7 device, we achieved a

frequency in excess of 600 MHz for the same resource utilization. The maximum configuration

time for a single pipeline consisting of 8 FUs is 0.85 µs at 300 MHz. This assumes that all 8

IMs require the full 32 instructions and that the kernel contexts are already preloaded into the

external context memory.

42

2 4 6 8

0

2

4

6

8

10

Overlay Size (Number of FUs)

%
FP

G
A

re
so

ur
ce

s
LUTs
FFs

Slices
DSP48E1s

(a) % resource usage

2 4 6 8
100

200

300

400

Overlay Size (Number of FUs)

M
H
z

(b) Fmax

Figure 3.5: Overlay scalability results on Zynq platform.

3.2.3 Overlay Control and Functionality

A back-pressure control circuit is built around the input FIFO channel to manage the func-

tionality of the proposed overlay, as shown in Figure 3.6. There are three control signals which

indicate the duration for instruction load, overlay setup and data write respectively, referred to

as inst load, reg wren, and data wren. Initially, FU instructions are read from the memory and

streamed through the daisy-chained FUs. During instruction load (when the inst load is high),

both the write enable port of the FIFO and the valid signal (valid out) for data output are dis-

abled. After instruction load, two integers are written to the back-pressure control circuit. The

first represents the number of data elements that need to be loaded into the first FU for a specific

compute kernel while the other is equal to the II minus one (II-1) and determines the interval

between data loads. These values are written into the controller when the reg wren signal is

active (high). The process of instruction load and overlay setup represent the initialization of the

overlay.

The dashed box on the left hand side of Figure 3.6 acts as the control module for the write

enable port of the FIFO, while the other dashed box on the right hand side contains the logic to

control the read enable port of the FIFO. The write enable signal (wr en) is determined as shown

in the truth table of Table 3.4. Data is written into the FIFO when wr en is high. The read enable

signal (rd en) for the FIFO is generated from a counter which determines the number of cycles

needed to load input data to the FU. The counter starts counting from 0 when the empty signal

CHAPTER 3: PROPOSED OVERLAY 43

Input FIFO Channel

empty

counter

rd_en

data_in

data_out valid_out

inst_loaddata_wren

instruction

full

reg_wren reg_in

wr_en

Figure 3.6: Back-pressure control circuit.

goes low (indicating that data is available in the FIFO). The counter counts up until the count

value equals II-1, at which point it rolls over back to zero. The rd en signal is valid only while

the counter is less than the number of data elements that need to be loaded into the first FU. If

the counter value is greater than or equal to the number of data elements that need to be loaded

into the first FU, the rd en signal is forced low and the input data is buffered in the FIFO.

Table 3.4: Truth table of the wr en signal.
inst load reg wren data wren full wr en

0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

The working mechanism of the proposed overlay is shown in Figure 3.7. As can be seen

from this diagram, the initialization of the overlay for the ‘gradient’ benchmark takes 22 clock

cycles in total, consisting of 20 cycles for instruction load and 2 cycles for overlay back-pressure

44

configuration. Then, input data is fed into the FIFO in a streaming fashion with an II of 11. The

latency (47 cycles) is obtained by calculating the interval between the input of the first FU and

the output of the last FU.

Instruction Input Data Input Data

Output DataOutput Data

11 cycles

47 cycles

inst_load

20 cycles

FU0

FU1

FU2

FU3

FU0

FU1

FU2

FU3

data_wren

reg_wren

2 cycles

Overlay

Setup

Figure 3.7: Flow chart of overlay functionality.

3.3 Compiling to the Overlay

An overlay has two separate design processes: the physical overlay implementation on the

FPGA, and the application mapping to the overlay. While the design and implementation of

the overlay relies on the conventional hardware design flow using vendor tools, this process

is done offline, once only, and so does not impact the compute kernel implementation of an

application. We then use an in-house automated compilation flow to provide a rapid, vendor

independent, mapping to the overlay. The mapping process comprises DFG extraction from high

level compute kernels, scheduling of the DFG nodes onto the overlay, and finally, the instruction

generation for each FU. This is also done offline. Then at power-on, the bitstream for the overlay

and any other unrelated hardware components are used to configure the FPGA. Subsequent to

this, the ARM processor loads the kernel configuration into the overlay pipeline and initiates

kernel execution. Our mapping flow is described below using the previous example.

CHAPTER 3: PROPOSED OVERLAY 45

HLL to DFG Conversion: The HercuLeS HLS tool [95] is used to transform a ‘C’ description

of the compute kernel to a DFG text description, as shown in Table 3.5, where nodes represent

operations and edges represent data flow between operations, as shown in Figure 3.1(b).

Table 3.5: DFG description of the compute kernel ‘gradient’ from Figure 3.1(b).

digraph graphname {
N1 [ntype="invar", label="I0_N1"];
N2 [ntype="invar", label="I1_N2"];
N3 [ntype="invar", label="I2_N3"];
N4 [ntype="invar", label="I3_N4"];
N5 [ntype="invar", label="I4_N5"];
N6 [ntype="operation", label="sub_N6"];
N7 [ntype="operation", label="sub_N7"];
N8 [ntype="operation", label="sub_N8"];
N9 [ntype="operation", label="sub_N9"];
N10 [ntype="operation", label="sqr_N10"];
N11 [ntype="operation", label="sqr_N11"];
N12 [ntype="operation", label="sqr_N12"];
N13 [ntype="operation", label="sqr_N13"];
N14 [ntype="operation", label="add_N14"];
N15 [ntype="operation", label="add_N15"];
N16 [ntype="operation", label="add_N16"];
N17 [ntype="outvar", label="O0_N17"];
N1 -> N6;
N2 -> N7;
N3 -> N6;
N3 -> N7;
N3 -> N8;
N3 -> N9;
N4 -> N8;
N5 -> N9;
N6 -> N10;
N7 -> N11;
N8 -> N12;
N9 -> N13;
N10 -> N14;
N11 -> N14;
N12 -> N15;
N13 -> N15;
N14 -> N16;
N15 -> N16;
N16 -> N17;
}

Operation Scheduling: Scheduling is used to generate a sequenced DFG, with nodes in each

scheduling stage being allocated to a single FU for execution. Here, the set of instructions from

the sequenced DFG is identified, then the cycle-by-cycle execution pattern is formed as shown

in Table 3.6, and lastly the 32-bit FU instructions are generated.

46

Table 3.6: First 48 cycles of the schedule with II=11.

cycle FU0 FU1 FU2 FU3

1 Load R01

2 Load R1
3 Load R2
4 Load R3
5 Load R4
6
7
8 SUB (R2 R0)2

9 SUB (R2 R1)
10 SUB (R3 R2)
11 SUB (R4 R2)
12 Load R0
13 Load R1
14 Load R2 Load R0
15 Load R3 Load R1
16 Load R4 Load R2
17 Load R3
18
19 SUB (R2 R0)
20 SUB (R2 R1) SQR (R0 R0)
21 SUB (R3 R2) SQR (R1 R1)
22 SUB (R4 R2) SQR (R2 R2)
23 Load R0 SQR (R3 R3)
24 Load R1
25 Load R2 Load R0
26 Load R3 Load R1 Load R0
27 Load R4 Load R2 Load R1
28 Load R3 Load R2
29 Load R3
30 SUB (R2 R0)
31 SUB (R2 R1) SQR (R0 R0)
32 SUB (R3 R2) SQR (R1 R1) ADD (R0 R1)
33 SUB (R4 R2) SQR (R2 R2) ADD (R2 R3)
34 Load R0 SQR (R3 R3)
35 Load R1
36 Load R2 Load R0
37 Load R3 Load R1 Load R0
38 Load R4 Load R2 Load R1 Load R0
39 Load R3 Load R2 Load R1
40 Load R3
41 SUB (R2 R0)
42 SUB (R2 R1) SQR (R0 R0) ADD (R0 R1)
43 SUB (R3 R2) SQR (R1 R1) ADD (R0 R1)
44 SUB (R4 R2) SQR (R2 R2) ADD (R2 R3)
45 Load R0 SQR (R3 R3)
46 Load R1
47 Load R2 Load R0
48 Load R3 Load R1 Load R0 output

1 The load operations are not real instructions from the IMs.
2 The arithmetic instructions shown in this table are inst fetch from Figure 3.9.

CHAPTER 3: PROPOSED OVERLAY 47

By using a simple ASAP schedule, we can allocate the nodes in each stage to a different

FU, which in the ‘gradient’ example (as shown in Figure 3.1) results in 4 stages, with the FU in

each stage being time-multiplexed among stage operations using a direct (non-programmable)

connection between FUs. That is, the first stage would contain four subtract operations which

would execute on the first FU, the second stage would contain four multiplication operations

executing on the second FU, and so on.

As indicated in Table 3.6, FU0 waits for an initial 5 cycles (from clock cycle 1 to clock cycle

5) while the data is loaded into the RF. As soon as loading has completed, FU0 is triggered by

the control signal (in the 6th clock cycle) and starts fetching the 4 SUB instructions from the

IM (clock cycle 8 to clock cycle 11). After a delay of 2 cycles, the DSP block executes the 4

SUB instructions (clock cycle 10 to clock cycle 13), one every cycle, using the data from the RF.

Note that as all operations are in the same scheduling stage there is no data dependency between

operations. FU0 starts sending the resulting data to FU1 on the 14th clock cycle (due to the 3

stage internal pipeline in the DSP block and 1 cycle for the output register) and then waits for the

cycle to repeat. Two extra cycles are needed for reading the instructions from the IM of FU0, and

hence we use the back-pressure control circuit (Figure 3.6) at the input FIFO channel to pause

further data input (from clock cycle 6 to clock cycle 11).

The operation of FU1 is similar to that of FU0. The output data from FU0 (the SUB instruc-

tion at cycle 10) is input to FU1 at cycle 14 due to the pipeline depth (2 cycles for instruction

fetch, 3 cycles for the DSP block and 1 cycle for the output register). Data input into the RF of

FU1 takes 4 cycles (clock cycle 14 to clock cycle 17), before FU1 is triggered (on the 18th clock

cycle) and starts executing the 4 multiply (SQR) instructions on the data available in its RF. Once

the first instruction is completed, the FU outputs the processed data to FU2 (for 4 cycles starting

from the 26th clock cycle) and waits for the next set of data from FU0, upon which it repeats the

previous operation. FU2 and FU3 also execute in a similar manner.

According to the above schedule, the II of the overlay is determined by the most compute

intensive FU, i.e. the maximum of the number of data load operations plus the number of exe-

cution operations with 2 additional clock cycles needed to read the instructions from the IM, as

in Equation 3.1. Thus the II for this example would be 11, consisting of 5 cycles for data entry,

2 cycles for the internal pipeline when reading instructions from the IM, and 4 cycles for the 4

48

subtract operations. Note that multiplexing the kernel operations of the DFG in Figure 3.1(b) to

a single FU would result in an II of 17 (5 loads, 11 operations, and 1 store), assuming best case

execution without NOP insertions, while a spatially configured overlay would require 11 FUs

with an II of 1. Furthermore, this means that only a small subset of all possible instructions need

to be stored in each FU, resulting in a very small memory requirement overcoming the prob-

lem of the large resource overheads due to the instruction storage requirements in the overlays

described in Chapter 2.

II = max
FU
{#load+#op+ 2} (3.1)

The instructions for the ‘gradient’ kernel with ASAP scheduling are shown in Table 3.7.

Since the output data of one FU is directly input into the register file of the next FU, no specific

instruction is required for loading the data at each stage. During the initialization time, each

FU checks the upper 8-bit tag of the external instructions, and only stores those where the tag

corresponds to its internal tag. With this working mechanism, the proposed scheduling approach

allows us to store just a small number of instructions for each FU, resulting in very small mem-

ories and hence an area efficient overlay. Other time multiplexed architectures, such as in [22]

need large instruction memories as the FUs in those architectures need to store the full list of

instructions executing every cycle, resulting in a much higher resource utilization.

Table 3.7: Instructions for kernel ‘gradient’

1 00000000_0011000000110011110_10_00010_00000_0 //SUB R2, R0
2 00000000_0011000000110011110_10_00010_00001_0 //SUB R2, R1
3 00000000_0011000000110011110_10_00011_00010_0 //SUB R3, R2
4 00000000_0011000000110011110_10_00100_00010_0 //SUB R4, R2
5 00000001_0000100010000101001_00_00000_00000_0 //SQR R0, R0
6 00000001_0000100010000101001_00_00001_00001_0 //SQR R1, R1
7 00000001_0000100010000101001_00_00010_00010_0 //SQR R2, R2
8 00000001_0000100010000101001_00_00011_00011_0 //SQR R3, R3
9 00000010_0000000000110011110_10_00000_00001_0 //ADD R0, R1

10 00000010_0000000000110011110_10_00010_00011_0 //ADD R2, R3
11 00000011_0000000000110011110_10_00000_00001_0 //ADD R0, R1

To verify the functionality, a four FU version of the overlay for the ‘gradient’ benchmark

was simulated using ModelSim SE-64 10.6. Figure 3.8 shows the initialization of the overlay.

Initially, the overlay waits 120 ns for the global reset to finish, which in this simulation occurs

within the first 6 clock cycles. The loading of the instructions is controlled by the inst load sig-

CHAPTER 3: PROPOSED OVERLAY 49

nal, happening from cycle 7 to cycle 26. During this period, there is no data in the programmable

pipeline and only instruction load is allowed. After instruction load (inst load is low), the over-

lay setup phase occurs (reg wren is high), and the two values which control the transfer of data

through the overlay (the number of data elements that need to be loaded and the II-1) are written

to the back-pressure control circuit. Lastly, external data is fed into the FIFO when wr en is

active, as shown in Figure 3.8. In this case, three packets of input data (“1, 2, 3, 4, 5”, “1, 3, 5,

7, 9” and “0, 1, 0, 1, 0”) are sent to the input FIFO. Any other data on data in is ignored.

Once the initialization of the overlay is finished, the datapath from the input FIFO to the

output FIFO functions as shown in Figure 3.9. Starting at cycle 31, the first five data elements

are then read from the input FIFO and fed into FU0, corresponding to the five data loads from

Table 3.6, as shown in Figure 3.9(a). The control signal for the IM is triggered once the valid in

signal becomes low. Two cycles of pipeline delay are required for the IM to access the instruc-

tions and present the source operand addresses to the RF, and another 2 cycles are needed to

align the configuration (instruction execution) to the DSP block, as seen in the inst fetch and

inst exec signals of Figure 3.9(a). The location of the inst fetch and inst exec signals in the FU

pipeline are shown on Figure 3.3. Data is output from the FU four cycles after the instruction

is executed, corresponding to a three-stage pipelined DSP block and an additional register at

the FU output. The back-pressure control delays the second input data package, which starts

transmitting at cycle 42, indicating the II equals to 11.

50

Fi
gu

re
3.

8:
In

iti
al

iz
at

io
n

of
th

e
ov

er
la

y.

CHAPTER 3: PROPOSED OVERLAY 51

(a
)

D
at

a
fr

om
in

pu
tF

IF
O

to
FU

1

(b
)

D
at

a
fr

om
FU

2
to

ou
tp

ut
FI

FO

Fi
gu

re
3.

9:
Si

m
ul

at
io

n
re

su
lt

of
ke

rn
el

‘g
ra

di
en

t’
.

52

Figure 3.9(b) shows the functionality of FU2, FU3 and the output FIFO. The output of FU3

is valid at clock cycle 78 and clock cycle 89 for the first input data package (“1, 2, 3, 4, 5”) and

the second input data package (“1, 3, 5, 7, 9”), respectively. Thus the latency from data input of

FU0 to the data output of FU3 is 47, which matches with the flow chart shown in Figure 3.7 and

the schedule of Table 3.6.

3.4 Experimental Evaluations

We evaluate the performance of the proposed overlay and that of our compiler using a set

of compute kernels extracted from compute intensive applications from the literature [1, 2] (the

DFG kernels in graphical format are shown in Appendix A), as shown in Table 3.8. The graph

depth corresponds to the number of FUs needed in the proposed overlay, while the effective

operations per cycle (eOPC) is the ratio of DFG nodes (op nodes) and the II, which ranges from

0.9 to 1.8. The II is high for benchmarks with a large number of I/O nodes and high average

parallelism.

Table 3.8: DFG characteristics of benchmark set.

Benchmark Characteristics
No. Name I/O graph op graph average

nodes edges nodes depth parallelism II eOPC

1. chebyshev 1/1 12 7 7 1.00 6 1.2
2. mibench 3/1 22 13 6 2.16 14 0.9
3. qspline 7/1 50 25 8 3.25 19 1.3
4. sgfilter 2/1 27 18 9 2.00 13 1.4
5. poly5 3/1 43 27 9 3.00 19 1.4
6. poly6 3/1 72 44 11 4.00 25 1.8
7. poly7 3/1 62 39 13 3.00 24 1.6
8. poly8 3/1 51 32 11 2.90 21 1.5

To demonstrate the benefits of the proposed overlay, we compare it to two of the more

architecture-focused SC overlays from the literatures [7, 85] and to RTL implementations of

the same kernels using Vivado HLS 2016.11. For all these implementations we use the minimal

1The RTL generated by Vivado HLS is a customized hardware design which generally has the best performance
in terms of power, delay and area.

CHAPTER 3: PROPOSED OVERLAY 53

number of FUs/hardware for the benchmark implementations. This is to observe the effect of

FU reduction on the area requirement. Figure 3.10 shows the number of FUs required for the

proposed linear TM overlay compared to that of the SC DySER overlay [85] and DSP-based

overlay in [7] for each of the benchmarks in Table 3.8, respectively. Since the DySER Overlay is

limited in size (to a 5×5 overlay) on the Zynq-7020 device, it cannot fit the benchmarks which

have more than 25 operation nodes. Figure 3.10 shows a significant reduction in the number

of FUs required by the proposed overlay. However, as seen in Table 3.8 this reduction in the

number of FUs comes at the expense of an increase in the II.

1 2 3 4 5 6 7 8
0

20

40

7

1
3

2
5

1
8

0 0 0 0

5

8

2
2

1
2

1
7

3
0

2
8

1
9

7 6

8 9 9

1
1 1
3

1
1

N
um

be
ro

fF
U

s
re

qu
ir

ed DySER Overlay DSP-based Overlay
Proposed Overlay

Figure 3.10: Number of FUs required for the benchmarks.

Because the different implementations we are attempting to compare use differing hardware

resources, it is difficult to compare them directly. Instead we use a single equivalent slices (or

eSlices) metric, where we assume that 1 DSP block is equivalent to 60 slices based on the ratio

of slices/DSP on the Zynq XC7Z02-1CLG484C (which is approximately 60). That is, if the FU

in the proposed overlay consumes 1 DSP block and 81 slices it uses 141 eSlices.

We also examine the resource area in eSlices and the throughput in Giga-operations/s (GOPS)

for the 3 implementations on a Xilinx Zynq XC7Z02-1CLG484C for the benchmarks in Ta-

ble 3.8, as shown in Table 3.9. The FPGA hardware resource consumption for the proposed

overlay shows a significant reduction compared to the DSP-based overlay (up to 63% FUs and

85% eSlices), while using just 35% more resources than the Vivado implementations, as shown

in Figure 3.11. The proposed linear TM overlay has a significant reduction in the throughput

(ranging from 6× to 22×) compared to the DSP-based overlay and the Vivado implementations,

due to the larger II, which is acceptable in cases when a low to moderate throughput is suffi-

54

cient. The important point here is that compared to the Vivado implementations, the linear TM

overlay has comparable area but with a reduced throughput, while the SC DSP-based overlay

has comparable throughput but with an increased area. In terms of the throughput per unit area

(in MOPS/eSlice) the three different implementations range from 0.26-0.35, 1.04-1.48, and 4.8-

11.5 for the proposed TM overlay, the DSP-based SC overlay and a direct HLS implementation,

respectively. Hence, even though the TM overlay is less efficient, in terms of MOPS/eSlice,

then either the SC overlay or a direct implementation using Vivado, its small area consumption

represents another useful design alternative for overlay design space exploration.

Table 3.9: Area and throughput comparison.

No. Benchmark Proposed Overlay DSP-based Overlay [7] Vivado HLS
Name Throughput Area Throughput Area Throughput Area

1. chebyshev 0.35 987 2.35 1900 2.21 265
2. mibench 0.29 846 4.36 3040 3.51 305
3. qspline 0.40 1128 8.71 8360 6.11 1270
4. sgfilter 0.42 1269 6.03 4560 4.59 645
5. poly5 0.43 1269 9.05 6460 7.02 765
6. poly6 0.53 1551 14.74 11400 11.88 1455
7. poly7 0.49 1833 13.07 10640 10.92 1025
8. poly8 0.46 1551 10.72 7220 8.32 1025

1 2 3 4 5 6 7 8
0

0.5

1

1.5

·104

A
re

a
C

on
su

m
pt

io
n

in
eS

lic
es

Proposed Overlay DSP-based Overlay
Vivado HLS

Figure 3.11: Area comparison for the benchmarks.

The context configuration data (CCD) required for the three different implementations is

shown in Table 3.10. The CCD of the benchmark set for the proposed overlay ranges from

65 Bytes to 410 Bytes. Thus, the worst case context switch between kernels takes 82 cycles

CHAPTER 3: PROPOSED OVERLAY 55

1 2 3 4 5 6 7 8
0

5

10

15

C
om

pu
te

E
ffi

ci
en

cy
in

M
O

PS
/e

Sl
ic

e

Proposed Overlay DSP-based Overlay
Vivado HLS

Figure 3.12: Compute efficiency comparison for the benchmarks.

(using a 40-bit wide context data word), which at 300 MHz is 0.27 us. For the SC DSP-based

overlay [7], with a worst case of 323 Bytes of configuration data, configuration takes 13 us. This

is 48× more than that of the proposed overlay as it does not use a local context memory, and

instead configuration data must come from external memory, which is much slower. For the HLS

implementation, we assume a partial reconfiguration (PR) bitstream size of 75 KBytes, which

is just large enough for all the benchmarks, which range from 26 KBytes to 74 KBytes. On the

Zynq platform this region requires a configuration time of 200 us, which is almost 740× slower

than the proposed overlay. Thus the proposed overlay allows for much faster context switching

between kernels, compared to the DSP-based overlay and the Vivado HLS implementation.

Table 3.10: Comparison on context configuration data.

No. Benchmark Proposed Overlay DSP-based Overlay [7] Vivado HLS
Name Instructions CCD Tiles1 CCD PR Frames2 CCD

1. chebyshev 13 65Bytes 5 54Bytes 64 26KBytes
2. mibench 26 130Bytes 8 86Bytes 92 37KBytes
3. qspline 54 270Bytes 22 237Bytes 184 74KBytes
4. sgfilter 30 150Bytes 12 129Bytes 92 37KBytes
5. poly5 48 240Bytes 17 179Bytes 128 52KBytes
6. poly6 79 395Bytes 30 323Bytes 164 66KBytes
7. poly7 82 410Bytes 28 301Bytes 128 52KBytes
8. poly8 65 325Bytes 19 204Bytes 128 52KBytes

1 Proposed Overlay: 5 Bytes per instruction. DSP-based Overlay: 10.75 Bytes per tile.
2 Vivado HLS: 36 frames in a DSP tile (10 DSP blocks), 28 frames in a CLB tile (50 CLBs), 1 frame
size is equal to 404 Bytes.

56

3.5 Summary

In this chapter, we have presented an area efficient FPGA overlay that uses a linear connection

of time-multiplexed FUs based on the Xilinx DSP48E1 macro. While the proposed overlay

exhibits a lower throughput than spatially configured overlays due to the much larger II, it has a

significantly reduced FPGA resource requirement and a much lower context switching time. Our

experimental evaluation shows that for a range of benchmarks, the proposed overlay delivers a

throughput which is 6× to 22× less than the SC DSP-based overlay and Vivado implementations,

but which uses 85% fewer eSlices than the DSP-based overlay and just 35% more eSlices than

the Vivado implementations.

We have demonstrated that the linear TM overlay can achieve significant area reduction and

a faster context switch at the cost of a reduced throughput. In the next chapter, we examine

the limitations of the proposed overlay, and present architectural enhancements along with a

better scheduling strategy to reduce the II, which results in an improved throughput and hence

an improved compute efficiency.

Chapter 4

Architectural Enhancements

4.1 Introduction

In this chapter, we examine the limitations of the linear TM overlay [96] presented in Chap-

ter 3 and explore a number of architectural enhancements to improve the throughput. While the

overlay of Chapter 3 is designed to be an area efficient architecture with fast context switch-

ing, the average compute efficiency is relatively low in terms of MOPS/eSlice compared to the

DSP-based SC overlay [7] and implementations designed directly using Vivado HLS, as shown

in Figure 4.1.

linear TM overlay DSP-based SC overlay Vivado HLS
0

2

4

6

8

M
O

PS
/e

Sl
ic

e

Figure 4.1: Average compute efficiency in MOPS/eSlice.

57

58

This low efficiency is mainly due to the low throughput caused by the large II for a given

compute kernel, because of the non-overlap of data load and instruction fetch, as can be seen

from the schedule of Table 3.6. The II of the overlay presented in Chapter 3 is obtained by

the maximum of the number of data load operations plus the number of execution operations

with 2 additional clock cycles needed to read the instructions from the IM. As a result, the data

elements for the next iteration of the kernel cannot be fed into the RF until all the instructions

have been fetched from the IM. To make it possible for the RF and IM of an FU to function

simultaneously, the RFs are redesigned as rotating register files, realized by introducing a simple

offset counter with two adders in addition to the original RF. This architectural enhancement

leads to a significant reduction in II, with a very small increase in the area overhead. The II can

be further reduced (by half) by replicating the data processing part of the FU and increasing the

data I/O to 64-bit, while the IM and other control circuitry are reused.

Another disadvantage of the proposed overlays is that it can only handle feed-forward DFGs,

as shown in Figure 4.2(a). When the DFG has inter-dependencies such as the red arrows in

Figure 4.2(b), the corresponding intermediate outputs need to be written back to the FU for

execution. To address this issue, we change the FU mapping by adding write-back support to

the new FU design. Beside the benefit of supporting feedback DFGs, the FU write-back also

provides an opportunity to significantly reduce the number of FUs by clustering DFGs with

inter dependency, at the cost of a moderate increase in the II compared to the overlay with just

the rotating register file. Additionally, without FU write-back, the size (depth) of the overlay

is determined by the critical path of the DFG, and hence, the overlay has to be reconfigured

whenever a new compute kernel requires a change in the depth of the DFG. FU write-back

support is achieved by modifying the instruction format and adapting the RAM32M-based RF

from a dual port configuration to a quad port configuration, along with some additional circuitry

to control write-back into the datapath.

The resource utilization and operating frequency for the modified FU designs with a rotating

register file, a replicated data path and with FU write-back are then examined. Additionally, the

impact of the depth of the internal write-back path (IWP) for the version with FU write-back is

analyzed. Compared to the original version (presented in Chapter 3), the modified overlays can

achieve up to 2.4× higher throughput in GOPS, 93.7% higher compute efficiency in MOPS/eS-

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 59

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

(a) Feed-forward DFG

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

(b) Feedback DFG

Figure 4.2: Two kinds of DFGs.

lice and a 43.7% lower latency in ns. The main contributions presented in this chapter can be

summarized as follows:

• Replacing the original register file in the FU with a rotating register file. This is bene-

ficial as it allows the concurrent execution of arithmetic operations with data load/store

operations when there is no conflict.

• Replicating the data processing part of the FU and increasing the data I/O to 64-bit further

reduces the II by half, while the IM and other control circuitry are reused.

• Adding write-back support to the FU, which makes it possible for the proposed overlay

to handle feedback DFGs with a fixed architecture, hence also avoiding frequent overlay

reconfiguration.

The work presented in this chapter has been published in

• X. Li, A. K. Jain, D. L. Maskell, and S. A. Fahmy, “A Time-Multiplexed FPGA Overlay

with Linear Interconnect”, in Proceedings of the Design, Automation and Test in Europe

Conference (DATE), Dresden, Germany, March 2018.

60

4.2 Architectural Enhancements

As discussed earlier, the II is one of the critical metrics to determine the throughput of an

accelerator. The overlay presented in Chapter 3 has a relatively large II, especially for DFGs

with a large number of inputs and operation nodes in the first scheduling stage. To reduce

this II and to generally improve the performance of the overlay FU, a number of architectural

enhancements are proposed. These will be discussed in the following subsections.

4.2.1 Rotating Register File

The most obvious way to reduce the II of Equation 3.1 is to overlap the loading of input

data with instruction execution. Instead of adding additional complexity into the FU to support

double-buffering, a rotating register file [97] is used to support the overlap of data written into

the RF with subsequent instruction execution. As seen from Figure 4.4, the rotating register file

is different from the normal RF in two aspects. First, the DC will never be reset so that the

input data is written into successive locations of the RF in a rotating way, one data packet after

another. Second, an offset counter (shown as the circuitry inside the dashed box) is added to

update the read address index, eliminating the offset deviation caused by this rotating mode. The

offset counter is triggered by the control signal, delayed by two clock cycles for synchronization

with the instructions (inst fetch) read from the IM. When the instruction fetch is finished, the

offset value will be added with the original addresses of the RF to ensure that the corresponding

data are used as operands. Besides the offset counter, the RAM32M-based RF needs to be

adapted to support the situation when reads and writes happen simultaneously. The original

design presented in Chapter 3 [96] used a RAM32M primitive with a dual port configuration (1

read, 1 read/write), whereas the rotating RF version requires a quad port configuration to support

2 reads and 1 write. We also examined the internal pipeline of the FU and found that some

registers (the lower registers on the left of the RF and the two output registers at the very right of

the FU in Figure 3.3) can be removed without sacrificing the performance.

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 61

D
S
P

 B
lo

c
k

R
A

M
3
2

M

R
eg

is
te

r

F
il
e

D CD C

d
at

a_
o

u
t

M
In

p
u

t
M

ap

L
o

g
ic

3
2 1

3
2

5
5 5

2
1

2
1

1
1

4
7

5
1

1
1

++
O

ff
se

t

C
o
u

n
te

r

v
al

id
_
o

u
t

5

C
o
n

tr
o

l

G
en

er
a

to
r

R
A

M
32

M

In
st

ru
ct

io
n

M
em

or
y

d
at

a_
in

v
al

id
_
in

in
st

_
lo

a
d

P
CIC

T
a

g

M
at

c
h

in
g

40 321

8
32

1 1

55

1

in
st

ru
c
ti
o

n

in
st

_
lo

a
d

140
in

st
ru

c
ti
o

n

in
st

_
fe

tc
h

in
st

_
ex

ec

Fi
gu

re
4.

3:
FU

en
ha

nc
em

en
t:

V
1.

62

+

+

inst_fetch

counter

D

C

D

C

RAM32M

Register

File
valid_in

control

inst_fetch [5:1]

inst_fetch [10:6]offset counter

data_in din
wr_en
wr_addr

rd_addr2

rd_addr1

Figure 4.4: Rotating register file.

The new FU design, which we refer to as version 1 (V1), is shown in Figure 4.3. The V1

design requires 1 DSP block, 200 LUTs (25% more than [96]), 243 FFs (17% less than [96])

and has a frequency of 334 MHz (2.8% higher than [96]) on a Zynq XC7Z020 (610 MHz on a

Virtex-7 VC707). An 8-FU V1 overlay is able to operate at 303 MHz on the Zynq-7020 device.

The II of the V1 overlay is determined as:

IIV 1 = max
FU
{#load+ 1,#op+ 2} (4.1)

where the extra cycle in the data load is required to separate data blocks. A complete timing

analysis of the new V1 FU is presented later in the chapter (Section 4.3).

4.2.2 Replicating the Stream Datapath

The II can be further reduced, at the expense of an increased data bandwidth requirement, by

increasing parallelism. Replicating the data processing part of the FU and increasing the data I/O

to 64-bit can reduce the II by half, while the IM and other control circuitry are reused at runtime.

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 63

R
A

M
3

2
M

R
eg

is
te

r

F
il
e

d
at

a_
o
u
t

In
p

u
t

M
ap

L
o
g
ic

3
2

3
2

5
5 5

2
1

2
1

1
1

4
7

5
1

1
1

++
O

ff
se

t

C
o
u
n
te

r
5

C
o
n
tr

o
l

G
en

er
a
to

r

R
A

M
32

M

In
st

ru
ct

io
n

M
em

or
y

d
at

a_
in

v
al

id
_

in

in
st

_
lo

a
d

P
CIC

T
a
g

M
at

c
h
in

g

4
0

6
41

8
32

1 1

55

1

in
st

ru
c
ti
o
n

in
st

_
lo

a
d

140
in

st
ru

c
ti
o
n

in
st

_
fe

tc
h

in
st

_
ex

ec

D CD C

1

3
2

v
al

id
_
o
u
t

D
S
P

 B
lo

c
k

R
A

M
3
2
M

R
eg

is
te

r

F
il
e

M
In

p
u
t
M

ap

L
o
g
ic

1
1

d
at

a_
in

[6
3

:3
2

]

d
at

a_
in

[3
1

:0
]

data_out[63:32] data_out[31:0]6
4

5

D
S
P

 B
lo

c
k

M

1
1

4
7

5

Fi
gu

re
4.

5:
FU

en
ha

nc
em

en
t:

V
2.

64

This design, which we refer to as version 2 (V2), is based on the V1 design so as to take

advantage of the rotating register file and the other enhancements in the V1 FU. In the V2 de-

sign, only the RF, the input map logic and the DSP block (shown within the dashed boxes) are

replicated, as shown in Figure 4.5. The V2 design requires 2 DSP blocks, 292 LUTs and 333

FFs, and operates at a frequency of 335 MHz. This represents an FU resource consumption

which has 46% more LUTs and 37% more FFs compared to the V1 design, with a frequency

which is almost the same. The II of the V2 design is half that of the V1 design, as shown in

Equation 4.2, resulting in a much higher compute efficiency. However, replicating the stream

datapath to support SIMD style processing is not a general solution and is only applicable to a

subset of all applications.

IIV 2 = {max
FU
{#load+ 1,#op+ 2}}/2 (4.2)

4.2.3 FU Write-back

The main disadvantage with these overlays is that they are feed-forward only, and thus the

overlay depth (the number of FUs) depends on the critical path of the DFG. However, if output

data is able to be written back to the RF, multiple nodes on the DFG critical path could be com-

bined within the same scheduling stage, thus reducing the overlay depth. Additionally, without

write-back, when a new application kernel (with a different DFG depth) needs to execute, the

overlay depth also needs to change. This requires an overlay reconfiguration between kernels

which significantly impacts the kernel context switch time. Thus, a fixed architecture which is

able to handle a range of more general kernels would improve execution time when multiple

kernels need to be accelerated.

Table 4.1: New instruction format.
FU part ALU Control Input Map Control RF Control Reserved
Signals NDF WB alumode inmode opmode cea2 ceb2 usemult split immop src-1 src-2

No. of bits 1 1 4 2 7 1 1 1 1 1 5 5 2
Locations [30] [29] [28:25] [24:23] [22:16] 15 14 13 12 11 [10:6] [5:1] [31][0]

ADD R3, R5 (WB) 0 1 0000 00 0110011 1 1 0 1 0 00011 00101 0 0
MUL R1, R0 (WB&NDF) 1 1 0000 11 0000101 0 0 1 0 0 00001 00000 0 0

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 65

D
S
P

 B
lo

c
k

R
A

M
3
2
M

R
eg

is
te

r

F
il
e

D CD C

d
at

a_
o
u
t

M
In

p
u

t
M

ap

L
o

g
ic

3
2 1

3
2

5
5

5

2
1

2
1

1
1

4
7

5
1

1
1

++
O

ff
se

t

C
o

u
n

te
r

v
al

id
_
o
u
t

5

2

0

N
D

FW
B

N
D

F

W
B

C
o
n

tr
o

l

G
en

er
a
to

r

R
A

M
32

M

In
st

ru
ct

io
n

M
em

or
y

d
at

a_
in

v
al

id
_
in

in
st

_
lo

a
d

P
CIC

T
a
g

M
at

c
h

in
g

40 321

8
32

1 1

55

1

in
st

ru
c
ti
o

n

in
st

_
lo

a
d

140
in

st
ru

c
ti
o

n

in
st

_
fe

tc
h

in
st

_
ex

ec

Fi
gu

re
4.

6:
FU

en
ha

nc
em

en
t:

V
3-

V
5.

66

Introducing data write-back is relatively simple and involves feeding the data out signal back

into the FU and multiplexing it with the data in signal, as shown in the lower left dashed box

in Figure 4.6. This requires that the instruction format of [96] be modified with two extra bits

added, a write-back (WB) bit and a no data forward (NDF) bit. Both bits are needed as there is

a possibility that the output data will be both written back to the RF and bypassed to the next

FU stage. Rather than adding two extra bits to the (already) 32-bit instruction, we note that the

DSP primitive is only used to support operations with 2 or 3 operands (which means the D port

is unused and can be disabled). This means that the three bits of the DSP inmode field can be

hardwired, allowing the use of 1-bit as the WB flag, 1-bit as the NDF flag, with 1-bit reserved

for future use. The valid in signal and the delayed WB flag are then used to select between the

two different data sources in the write-back logic. The new instruction format can be found in

Table. 4.1.

4.2.4 Comparison of the New FU Architectures

The resource consumption and maximum frequency for the various FU designs, including

the FU design of Chapter 3 (which we now refer to as version 0 (V0)), when implemented on a

Zynq XC7Z020, are listed in Table 4.2. The V1 FU consumes around 25% more LUTs than that

of V0, mainly due to the addition of the RAM32M primitive and the offset counter. However,

there is an improvement in frequency and a reduction in the number of FFs due to the removal

of the registers before the RF and after the DSP block. The resource consumption of V2 is less

than twice that of V1, with a similar frequency to V1.

Table 4.2: Comparison of different FU designs.

V0 V1 V2 V3 V4 V5

DSPs 1 1 2 1 1 1
LUTs 160 200 292 212 207 248
FFs 293 243 333 228 163 126
Fmax 325 334 335 323 254 182
IWP – – – 5 4 3

Table 4.2 also shows the resource utilization, operating frequency and internal write-back

path (IWP) for three different implementations of the FU with write-back, referred to as version

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 67

3 (V3), version 4 (V4) and version 5 (V5). The V3 FU is identical to V1, except that the write-

back logic is added, and includes all of the circuitry in Figure 4.6. The IWP for the V3 FU is

five, consisting of one cycle in the RF, one at the register between the RF and the input map

logic, and three in the DSP block. This overlay operates at a frequency close to that of the non-

WB overlays. It should be noted that the IWP for DSP based implementations has a significant

impact on instruction sequencing, due to data hazards, resulting in the need for NOP insertion to

remove dependencies. Thus, other FU implementations with reduced IWP were also examined.

To reduce the IWP, the registers between the RF RAM32M primitive and the input map logic

(the four shaded registers in Figure 4.6) can be deleted, resulting in a frequency reduction caused

by the reduced operating frequency of the RAM32M primitive. This FU, referred to as V4, is

identical to V3 (except that the shaded registers in Figure 4.6 are removed) and has an IWP of

4 and a frequency of 254MHz. A further reduction in the IWP can be achieved by reducing the

pipeline depth of the DSP block from three to two, resulting in an IWP of 3 and a frequency of

182MHz.

The V3-V5 FUs can then be implemented as a fixed depth overlay, as in Figure 3.2. We

propose implementing two depth 8 overlays in a single tile. The two overlays in a tile could

then either be connected in series (to form a single depth 16 overlay) or connected in parallel to

produce a depth 8 overlay with dual datapaths, similar to the V2 based overlay.

As data forwarding within a DSP block is not possible, due to the inability to access the

internal signals, it is important to understand the impact of a fixed depth overlay when write-back

is used. When scheduling DFG nodes to the overlay, any dependency between nodes will require

the insertion of NOPs, equal to IWP-1, unless other non-dependant nodes can be scheduled

between the nodes with the dependency.

4.3 Compiling to the Overlay

Kernel Mapping: The HercuLeS HLS tool [95] is used to transform a ‘C’ description of the

compute kernel to a DFG description, similar to the mapping tool as discussed in Chapter 3. Our

mapping flow is described below using the previous ‘gradient’ example (shown in Figure 3.1).

68

For the V1 and V2 based overlays, ASAP scheduling is used which results in no data de-

pendencies between operations at the same scheduling stage, similar to that for the V0 based

overlay [96], with nodes in each scheduling stage then being allocated to a single V1 or V2

FU for execution. The set of instructions from the sequenced DFG is identified, then the cycle-

by-cycle execution pattern is formed, interleaving load/store and arithmetic/ALU operations, as

shown in Table 4.3. As seen from this table, the FU utilization is improved significantly by over-

lapping the current instruction fetch with the data load for the next iteration. For the ‘gradient’

benchmark, the II is reduced from 11 for V0 [96] to 6 for V1 or 3 for V2 using the same ASAP

scheduling. This translates to a throughput of 0.59 Giga-operations/s (GOPS) for the V1 based

overlay with a latency of 142 ns (1.11 GOPS and 150.5 ns for V2), compared to 0.35 GOPS and a

latency of 156 ns for the V0 based overlay. Lastly the 32-bit FU instructions are generated. This

new instruction schedule for the ‘gradient’ benchmark (Table 4.3) is used with a 4 FU version of

the V1 overlay in the simulation of Figure 4.7 to verify functionality.

The initialization and input data packets of the V1 overlay is identical to that of V0. The

first five data elements are read from the input FIFO and fed into FU0 at clock cycle 31, corre-

sponding to the five data loads from Table 4.3, as shown in Figure 4.7(a). The 2-cycle delay for

the instruction fetch and another 2-cycle delay for the alignment of DSP block configuration are

identical to those of V0. The offset value is updated with the accumulation of a new data packet

when the last inst fetch has been finished. This mechanism guarantees that current instruction

fetch of FU0 can be overlapped with a new data packet transmission starting at cycle 31, indi-

cating an II of 6. Since the two output registers at the very right of the FU have been removed,

the output data of the FU can be obtained 3 cycles after the instruction is executed, reducing

the latency by 1 cycle for each FU. Figure 4.7(b) shows the functionality of FU2, FU3 and the

output FIFO. The output of FU3 is valid at clock cycle 74 and clock cycle 80 for the first input

data package (“1, 2, 3, 4, 5”) and the second input data package (“1, 3, 5, 7, 9”), respectively.

Thus the latency from data input to FU0 to data output from FU3 is 43, which matches with the

schedule of Table 4.3.

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 69

Table 4.3: First 44 cycles of the ‘gradient’ schedule (II=6).

cyc FU0 FU1 FU2 FU3

1 Load R01

2 Load R1
3 Load R2
4 Load R3
5 Load R4
6
7 Load R0
8 Load R1; SUB (R2 R0)2

9 Load R2; SUB (R2 R1)
10 Load R3; SUB (R3 R2)
11 Load R4; SUB (R4 R2)
12
13 Load R0 Load R0
14 Load R1; SUB (R2 R0) Load R1
15 Load R2; SUB (R2 R1) Load R2
16 Load R3; SUB (R3 R2) Load R3
17 Load R4; SUB (R4 R2)
18
19 Load R0 Load R0; SQR (R0 R0)
20 Load R1; SUB (R2 R0) Load R1; SQR (R1 R1)
21 Load R2; SUB (R2 R1) Load R2; SQR (R2 R2)
22 Load R3; SUB (R3 R2) Load R3; SQR (R3 R3)
23 Load R4; SUB (R4 R2)
24 Load R0
25 Load R0 Load R0; SQR (R0 R0) Load R1
26 Load R1; SUB (R2 R0) Load R1; SQR (R1 R1) Load R2
27 Load R2; SUB (R2 R1) Load R2; SQR (R2 R2)
28 Load R3; SUB (R3 R2) Load R3; SQR (R3 R3)
29 Load R4; SUB (R4 R2)
30 Load R0; ADD (R0 R1)
31 Load R0 Load R0; SQR (R0 R0) Load R1; ADD (R2 R3)
32 Load R1; SUB (R2 R0) Load R1; SQR (R1 R1) Load R2
33 Load R2; SUB (R2 R1) Load R2; SQR (R2 R2) Load R3
34 Load R3; SUB (R3 R2) Load R3; SQR (R3 R3)
35 Load R4; SUB (R4 R2) Load R0
36 Load R0; ADD (R0 R1) Load R1
37 Load R0 Load R0; SQR (R0 R0) Load R1; ADD (R2 R3)
38 Load R1; SUB (R2 R0) Load R1; SQR (R1 R1) Load R2
39 Load R2; SUB (R2 R1) Load R2; SQR (R2 R2) Load R3 ADD (R0 R1)
40 Load R3; SUB (R3 R2) Load R3; SQR (R3 R3)
41 Load R4; SUB (R4 R2) Load R0
42 Load R0; ADD (R0 R1) Load R1
43 Load R0 Load R0; SQR (R0 R0) Load R1; ADD (R2 R3)
44 Load R1; SUB (R2 R0) Load R1; SQR (R1 R1) Load R2 output

1 The load operations are not real instructions from the IMs.
2 The arithmetic instructions shown in this table are inst fetch from Figure 4.7.

70

(a
)

D
at

a
fr

om
in

pu
tF

IF
O

to
FU

1

(b
)

D
at

a
fr

om
FU

2
to

ou
tp

ut
FI

FO

Fi
gu

re
4.

7:
Si

m
ul

at
io

n
re

su
lt

of
ke

rn
el

‘g
ra

di
en

t’
.

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 71

Typically, most of the existing CGRA architectures adopt Modulo scheduling [98], or a

derivative algorithm, to achieve a minimum II. However, Modulo scheduling is based on the

assumption that each operation node is executed in 1 cycle and the transfer of data between two

arbitrary FUs completes in 1 cycle, which is not realistic for highly pipelined architectures. In-

stead, for a fixed depth (V3-V5) overlay we use an iterative greedy scheduling strategy which

groups DFG nodes at each scheduling step into clusters and then adds DFG nodes along the crit-

ical path from subsequent clusters, while balancing the II across all clusters. The final number

of scheduling clusters must be less than or equal to the overlay depth. In order to minimize the

II and latency as much as possible, instructions with feedback data (that is with write-back to

the current FU) should be scheduled as soon as possible. Another prerequisite is that write-back

and load operations cannot occur at the same time as only a single write into the RF is allowed.

In that case, the instructions should be triggered as soon as enough operands are located in the

RF, instead of waiting for the whole data packet to be stored. This requires an additional en-

able signal which tells when to generate a control signal to fetch instructions from the IM, and

is achieved by using one of the reserved bits in the new instruction set (Table 4.1) to specify

the starting point for the instruction fetch with a register variable generated by the instruction

counter.

As an example of fixed depth overlay scheduling, consider a slightly more complicated

benchmark, the ‘qspline’ benchmark of Figure 4.8, mapped to depth 4 (4 FU) V3-V5 over-

lays. The ‘qspline’ benchmark has a critical path of 8 and would require an 8 FU overlay if

ASAP scheduling was used. The scheduling process targeting a 4 FU overlay produces the 4

instruction clusters shown in Figure 4.8 (within the red dashed regions). NOPs (equal to IWP-

1) must be added between dependent instructions (dependent DFG nodes) unless other non-

dependent instructions can be scheduled in between. For example, in the first (top) cluster, node

17 (MUL 4 N17) and node 15 (MUL N15) have a dependency (indicated by the edge between

the two nodes). The scheduling algorithm schedules node 17 first, followed by nodes 13, 25, 9,

20, and 12, before node 15 is scheduled. Hence, the dependency between nodes 17 and 15 is re-

solved and no NOPs need to be inserted. Similarly for the second cluster there are dependencies

between nodes 14 and 11, nodes 26 and 27, and nodes 21 and 22. Scheduling as: nodes 14, 26,

21, 10, 16, 11, 27, 22, again resolves all dependencies, for all overlay versions. In cluster three,

72

scheduling as: 28, 18, 24, 23, 8, 19, 30, resolves all dependencies for the V4 and V5 overlays,

but not for the V3 overlay, which with an IWP of 5 requires 4 operations between dependent

nodes. Hence, a single NOP must be added to the schedule between node 23 and node 19 for

the V3 overlay. For the bottom cluster, graph balancing is performed enabling the addition of

the outputs from node 23 and node 8 (in the 3rd scheduling stage) to be scheduled, followed by

node 31. Lastly, IWP-1 NOPs are inserted before the final addition. An example schedule for a

4 FU version of the V3 overlay is shown in Table 4.4.

The consequences of a fixed depth overlay are an increase in the II with a corresponding

reduction in the throughput, but with a significant reduction in both the resource utilization and

the latency. For the ‘qspline’ benchmark, the 4 FU V3 overlay has an II of 17, with a throughput

of 0.45 GOPS and a latency of 152 ns, while the V4 overlay has an II of 14, a throughput of 0.43

GOPS and a latency of 185 ns. The 4 FU V5 overlay has an II of 14, a throughput of 0.29 GOPS

and a latency of 198 ns. In comparison, the 8 FU V1 overlay (with the minimum depth needed to

implement the ‘qspline’ benchmark using ASAP scheduling) requires approximately twice the

hardware resource and has an II of 11, a throughput of 0.69 GOPS and a latency of 340 ns. It

should be noted, that in some cases, limiting the depth of the overlay and properly balancing the

schedule between stages actually results in a reduction in the II, compared to the simple ASAP

schedule used in the V1 overlay, as can be seen in Table 4.5. Because of the reduced operating

frequency of the V5 FU (just 56% of the V3 version), the V5 overlay has a significantly reduced

throughput compared to the V3 and V4 overlays and will not be considered further.

4.4 Experimental Evaluation

We compare the performance of our linear TM overlays using a set of compute kernels

from [1, 2] (the DFG kernels in graphical format are shown in Appendix A), as shown in Ta-

ble 4.5. The V1 (1 DSP, no WB), V2 (2 DSP, no WB), V3 (1 DSP, WB, IWP=5) and V4 (1

DSP, WB, IWP=4) overlays are compared to the V0 overlay from Chapter 3 [96]. The V1, V2

and V0 overlays have a depth equal to the critical path (Depth) of the DFG, and are configured

on a kernel by kernel basis, while V3 and V4 both have a fixed depth of eight. All overlays are

implemented on a Zynq XC7Z020.

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 73

Table 4.4: First 47 cycles of the ‘qspline’ schedule (II=17).

cyc FU0 FU1 FU2 FU3

1 Load R01

2 Load R1; Bypass R02

3 Load R2; Bypass R1
4 Load R3; MUL (R2 4)*3

5 Load R4; MUL (R3 R0)
6 Load R5; MUL (R4 6)
7 Load R6; MUL (R1 R0) Load R0
8 WB R7*; MUL (R5 4) Load R1
9 MUL(R6 R1) NDF
10 MUL(R7 R0) Load R2; Bypass R0
11 Load R3; Bypass R1
12 Load R4; MUL(R2 R0)*
13 Load R5; MUL(R4 R3)*
14 Load R6; MUL(R5 R4)*
15 Load R7; MUL(R6 R1) Load R0
16 WB R8*; MUL(R7 R0) Load R1
17 WB R9*; MUL(R8 R0) NDF
18 Load R0 WB R10*; MUL(R9 R4) NDF
19 Load R1; Bypass R02 MUL(R10 R1) NDF
20 Load R2; Bypass R1 Load R2
21 Load R3; MUL (R2 4)*3 Load R3; MUL (R2 R1)*
22 Load R4; MUL (R3 R0) Load R4; MUL (R3 R1)*
23 Load R5; MUL (R4 6) Load R5; MUL (R4 R0)*
24 Load R6; MUL (R1 R0) Load R0 Load R6; MUL (R6 R1)
25 WB R7*; MUL (R5 4) Load R1 WB R7*; NOP
26 MUL(R6 R1) NDF WB R8*; MUL (R7 R1) NDF
27 MUL(R7 R0) Load R2; Bypass R0 WB R9*; MUL (R8 R0) NDF
28 Load R3; Bypass R1 MUL (R9,R5) NDF
29 Load R4; MUL(R2 R0)* Load R0
30 Load R5; MUL(R4 R3)* NDF
31 Load R6; MUL(R5 R4)* Load R1
32 Load R7; MUL(R6 R1) Load R0 Load R2; ADD (R1 R0)*
33 WB R8*; MUL(R7 R0) Load R1 Load R3; NOP
34 WB R9*; MUL(R8 R0) NDF NOP
35 Load R0 WB R10*; MUL(R9 R4) NDF NOP
36 Load R1; Bypass R02 MUL(R10 R1) NDF WB R4*; NOP
37 Load R2; Bypass R1 Load R2 ADD (R4 R2)*
38 Load R3; MUL (R2 4)*3 Load R3; MUL (R2 R1)* NOP
39 Load R4; MUL (R3 R0) Load R4; MUL (R3 R1)* NOP
40 Load R5; MUL (R4 6) Load R5; MUL (R4 R0)* NOP
41 Load R6; MUL (R1 R0) Load R0 Load R6; MUL (R6 R1) WB R5*; NOP
42 WB R7*; MUL (R5 4) Load R1 WB R7*; NOP ADD (R5 R3)
43 MUL(R6 R1) NDF WB R8*; MUL (R7 R1) NDF
44 MUL(R7 R0) Load R2; Bypass R0 WB R9*; MUL (R8 R0) NDF
45 Load R3; Bypass R1 MUL (R9,R5) NDF
46 Load R4; MUL(R2 R0)* Load R0
47 Load R5; MUL(R4 R3)* NDF output

1 The load operations are not real instructions from the IMs.
2 The arithmetic instructions shown in this table are inst fetch from Figure 4.6.
3 * represents a write-back instruction where the output will be sent back to the RF after IWP-1 cycles.

74

I4_N5 I2_N3

MUL_N12

MUL_N10

MUL_N28

MUL_N8

MUL_4_N20 MUL_6_N25 MUL_4_N17MUL_N13

MUL_N14 MUL_N15

MUL_N11 MUL_N16

MUL_N18

MUL_N19ADD_N30

ADD_N31

ADD_N32

ADD_N29

O0_N33

MUL_N21

MUL_N22

MUL_N23

MUL_N26

MUL_N27

MUL_N9

MUL_N24

I5_N6 I1_N2 I3_N4 I6_N7I0_N1

Figure 4.8: Data flow graph of the ‘qspline’ benchmark.

Table 4.5: DFG characteristics of benchmark set.

No. Benchmark I/O #Ops Depth IIV 0 IIV 1 IIV 2 IIV 3
1 IIV 4

1

1. chebyshev 1/1 7 7 6 4 2 4 4
2. mibench 3/1 13 6 14 8 4 8 8
3. qspline 7/1 25 8 19 11 5.5 11 11
4. sgfilter 2/1 18 9 13 8 4 8 8
5. poly5 3/1 27 9 19 11 5.5 11 11
6. poly6 3/1 44 11 25 14 7 13 12
7. poly7 3/1 39 13 24 14 7 20 17
8. poly8 3/1 32 11 21 12 6 16 14

1 The II of the V3 and V4 overlays for the qspline benchmark reported here are
different to that of Chapter 4.3, as here a depth 8 overlay is used, whereas in
Chapter 4.3 the example used a depth 4 overlay.

The DSP, logic slice utilization and operating frequency for different depth V0, V1 and V2

overlays are shown in Figure 4.9. The V3 and V4 overlays are not included in this figure as

they have a fixed depth (of 8). A depth 8 V1 overlay consumes 654 logic slices and 8 DSP

slices which represents less than 5% of the logic and DSP resources on Zynq. The depth 8 V2

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 75

overlay consumes 893 logic slices and 16 DSP blocks or less than 8% of the Zynq resources. By

comparison, the 8 FU V3 (V4) overlay consumes 814 (817) logic slices, 8 (8) DSP slices and

operates at a frequency of 286MHz (233MHz).

2 4 6 8 10 12 14 16
0

500

1,000

1,500

2,000

N
um

be
ro

fl
og

ic
sl

ic
es

Slices (V0)
Slices (V1)
Slices (V2)

2 4 6 8 10 12 14 16
0

10

20

30

40

Overlay Size (Number of FUs)
N

um
be

ro
fD

SP
bl

oc
ks

Slices (V0)
Slices (V1)
Slices (V2)
DSPs (V0, V1)
DSPs (V2)

(a) Resource usage

2 4 6 8 10 12 14 16
260

280

300

320

340

Overlay Size (Number of FUs)

M
H
z

V0
V1
V2

(b) Fmax

Figure 4.9: V1 and V2 overlay scalability on Zynq XC7Z020.

The DFG characteristics (number of I/O, number of arithmetic operations and graph depth)

for the chosen benchmarks and the II achieved when mapped to the various overlays are shown

in Table 4.5. For the first three benchmarks, which have a depth ≤ 8, ASAP scheduling is used

to map to the V3 and V4 overlays, and thus, the II is the same as for the V1 overlay. The V1 (V2)

overlay has an average 42% (71%) reduction in the II, while the V3 (V4) overlay has an average

34% (40%) reduction in the II for the depth > 8 benchmarks, compared to the V0 overlay.

Figure 4.10 shows the throughput, latency and compute efficiency of the different overlays for

the benchmarks given in Table 4.5. In terms of throughput, all overlays have a higher throughput

than the V0 overlay. This is because interleaving data transfer with execution reduces the II and

hence improves throughput. The two DSP V2 overlay has approximately twice the throughput

as the V1 overlay, but also requires twice the data bandwidth. The size of both of these over-

lays is dependant on the depth (critical path) of the application kernel’s DFG, and needs to be

reconfigured when the application kernel changes. A depth 8 V1 (V2) overlay requires a min-

imum reconfigurable region of 7 (9) CLB tiles and 1 (2) DSP tile with a configuration time of

0.73 (1.02) ms using the processor configuration access port (PCAP). Additionally, the overlays

require a further 0.29µs to load the configuration data for the largest benchmark.

76

1 2 3 4 5 6 7 8
0

1

2

G
O

PS

V0 V1 V2 V3 V4

(a) Throughput in GOPS

1 2 3 4 5 6 7 8
0

200

400

600

800

ns

V0 V1 V2 V3 V4

(b) Latency in ns

1 2 3 4 5 6 7 8
0

0.5

1

M
O

PS
/e

Sl
ic

e V0 V1 V2 V3 V4

(c) Compute efficiency in MOPS/eSlice

Figure 4.10: Throughput, latency and compute efficiency for the benchmarks.

The single DSP V3 overlay has a throughput similar to the V1 overlay, with an average

reduction of just 10%. The V4 overlay has a slightly reduced throughput as it operates at a

lower frequency due to the removal of pipeline registers to reduce the IWP. The V3 and V4

overlays both have a fixed depth (in these experiments a depth of 8 is used). Adding write-

back capabilities allows larger kernels to be mapped to a smaller number of FUs, removing the

requirement that the overlay depth must be the same as the kernel critical path. This eliminates

the need to reconfigure the overlay when the application kernel changes, making the overlay

more general purpose (but requiring a different scheduling strategy). Thus, a hardware context

switch on the V3 overlay requires just 0.25µs for the largest benchmark, representing a 2900×

reduction compared to the V1 overlay.

The latency is heavily dependent on the depth of the overlay. For the V0, V1 and V2 overlays,

CHAPTER 4: ARCHITECTURAL ENHANCEMENTS 77

the overlay depth is equal to the DFG depth due to the ASAP scheduling strategy used, and hence

these overlays all have a larger latency. The V3 and V4 overlays generally show a significant

reduction in the latency, particularly for larger depth DFGs, due to the fixed overlay depth.

As seen from Figure 4.10(c), all of the overlay designs proposed in this chapter (V1-V4)

outperform the original V0 overlay in terms of compute efficiency (MOPS/eSlice). The V1, V2,

V3 and V4 overlays achieve 66.7%, 93.7%, 48.5% and 27.3% better average compute efficiency,

respectively, compared to the V0 overlay.

Of the two overlays with write back, the V3 overlay (with the higher IWP and the require-

ment for more NOP insertion) always outperforms the V4 overlay, across all metrics and all

benchmarks. This is because the higher operating frequency negates the performance reduction

due to additional NOP insertion.

4.5 Summary

We have presented an area efficient FPGA overlay with a linear connection of TM FUs based

on the Xilinx DSP48E1. Interleaving data transfer with instruction execution significantly re-

duces the II with a resulting increase in throughput. Introducing write-back into the FU design

and modifying the scheduling strategy allows the overlay depth to be fixed. This eliminates

the need to reconfigure the overlay if the application kernel changes, making the overlay more

general. These changes significantly reduce the latency with just a small decrease in through-

put. The V3 overlay has the best performance, as for a fixed data bandwidth, it has comparable

throughput with a significantly reduced latency.

Chapter 5

System Integration

5.1 Introduction

In Chapter 3 we proposed a linear TM overlay with potential for use as an area efficient

FPGA accelerator. In Chapter 4, significant improvements to the architecture were described

which further improved the overlay performance. However, to demonstrate the suitability of the

overlay as an FPGA accelerator, it is important to develop a (memory) interface between the pro-

cessor/memory subsystems and the overlay which is able to provide high-bandwidth (and large

scale) data transmission. Developing an interface from scratch requires a significant amount of

work, such as low level hardware design, device driver and software APIs, which impedes the

fast development of a complete system design. An examination of existing FPGA solutions for

memory interfaces, showed that most fall into one of two categories, AXI bus-based solutions

for FPGA SoC systems (like in Xilinx Zynq) and PCle-based solutions for stand-alone systems

connected to the host CPU. Among the various frameworks, some of them abstract the inter-

faces with simple FIFO connections and provide streaming data transfers, which matches the

requirements of our proposed linear TM overlay.

In this chapter, we examine two memory interfaces, namely Xillybus (which supports both

AXI and PCIe-based systems) and RIFFA 2.2 (which supports just PCIe-based systems), and

integrate the overlay subsystem into complete hardware accelerator systems. The performance

of these hardware accelerators for a range of benchmarks is investigated and performance results

78

CHAPTER 5: SYSTEM INTEGRATION 79

are presented. The proposed overlay based accelerator is also compared to a state-of-art TM

overlay, namely VectorBlox MXP, in terms of bandwidth and resource usage.

The main contributions can be summarized as follows:

• Examine memory interfaces for the hardware accelerators implemented on FPGAs, and

provide a comprehensive analysis on two of the state-of-the-art integration frameworks,

i.e. Xillybus and RIFFA.

• Present complete hardware accelerator systems by integrating the linear TM overlays with

Xillybus and RIFFA interfaces, respectively, and present the performance of these hard-

ware accelerators for a range of benchmarks.

• Make comparisons with a state-of-the-art TM overlay, namely VectorBlox MXP, which

shows that the proposed overlay achieves approximately 50% of the throughput, but uses

just half of the bandwidth and less than 20% hardware resource compared to MXP.

5.2 Available Solutions for Memory Interfaces

A number of emerging solutions have been developed for interfacing hardware accelerators

with a processor in both the academic and industrial fields. The most common applications are

AXI bus-based solutions [99–101] for FPGA SoC systems (like in Xilinx Zynq) and PCle-based

solutions [5, 101–104] for stand-alone systems connected to a host CPU.

5.2.1 AXI bus-based Solutions

ZyCAP [99] was developed as an open source soft DMA controller for high performance

partial reconfiguration on the Xilinx Zynq. It provides two interfaces, an AXI-Lite interface

connected to general purpose (GP) port and another AXI4 interface connected to the high per-

formance (HP) port, and achieves a maximum throughput of 382 MB/s between the external

memory and the partial reconfigurable region (PRR).

Sadri et al. proposed an infrastructure to evaluate the energy consumption and data process-

ing bandwidth between the ARM processor sub-system and the DRAM via the AXI HP/ACP

80

interface [100]. The implementation achieved a maximum full-duplex data processing band-

width of over 1.6 GB/s for a single HP/ACP port, running at 125 MHz on an XC7Z020-1C

device.

Xillybus [101] is a commercial solution which provides a very simple abstraction of the AXI

ACP interface for the Zynq device. It is consists of a loopback demo hardware design with a full

Linux distribution running on the ARM processor. Xillybus can achieve a maximum data rate of

around 300 MB/s running at 100 MHz on a Zynq-based ZedBoard.

5.2.2 PCIe-based Solutions

Northwest Logic [105] and Xillybus [101] are two representative commercial solutions which

support PCIe interfaces for different generations while providing portability across different

FPGA devices. Northwest Logic is closed source, with no evaluation kit available before a

licensing payment. On the other hand, Xillybus is provided free of charge for research and

teaching purposes. Users have full access to customize the complete Xillybus project, including

the hardware design, the device driver and the software applications, with good documentation

provided. To the best of our knowledge, the author of Xillybus has been shifting the focus from

the AXI interface to the PCIe interface to support a higher bandwidth. The latest version of

Xillybus (Revision XL) is able to achieve a maximum data rate of around 3.5 GB/s for Gen2x8

and Gen3x4 PCIe interfaces.

In addition to these commercial solutions, there are a number of academic PCIe-based solu-

tions, such as DyRACT [102] and EPEE [103], which have been proposed for slightly different

purposes. DyRACT mainly focuses on dynamic partial reconfiguration over the PCIe Gen2x4 in-

terface, along with a configuration controller and clock management. EPEE was developed as a

general purpose PCIe communication library, targeting a wide range of FPGA devices. However,

there is no access to the EPEE project from the provided site.

ffLink [104] was proposed as the first open source solution for a PCIe Gen3x8 interface and

achieved a throughput of 7.06 GB/s on a Xilinx VC709 platform. It was built based on the AXI

infrastructure and heavily relied on the Xilinx CDMA engines, which hinders its widespread use

beyond Xilinx devices.

CHAPTER 5: SYSTEM INTEGRATION 81

JetStream [106] was presented as a novel PCIe Gen3 solution which provides both FPGA-

to-Host and FPGA-to-FPGA communication. Apart from ffLink, JetStream is the only open-

source solution which supports PCIe Gen3x8 and achieves a peak unidirectional bandwidth of

7.05 GB/s. However, JetStream was only tested for two specific Virtex-7 boards and it is not

well documented for further development. Currently, the hardware project is unable to be used

with a Vivado version above Vivado 2015.4 because of a compatibility issue.

RIFFA [5] is an open source reusable framework, supporting the integration of FPGA accel-

erators with workstations through both the second and third generation PCIe protocols. Similar

to Xillybus, it aims at providing a very simple interface to user application logic via first word

fall through (FWFT) FIFOs. A scatter-gather DMA-based design bridges the vendor-specific

PCIe Endpoint core and multiple communication channels (up to 12) for the user defined IP

cores. RIFFA supports a wide range of software APIs such as C/C++, Java, Python and MAT-

LAB, and the hardware interface is easy to understand, with example timing diagrams provided.

The latest version of RIFFA (version 2.2) achieves a unidirectional maximum bandwidth of 3.6

GB/s for the Gen2x8 configuration on the Xilinx VC707 platform and 3.5 GB/s for the Gen3x4

configuration on the Terasic DE5-Net, respectively.

Table 5.1 lists the theoretical bandwidth of the AXI and PCIe memory interfaces. Although

the total theoretical bandwidth of an AXI interface is comparable to that of a PCIe interface,

most of the AXI-based solutions are not able to make full use of all available high performance

HP/ACP ports, while the PCIe-based counterparts can support up to 8 lanes and some of them

achieve a bandwidth which is close to the theoretical maximum. Among the existing implemen-

tations, Xillybus and RIFFA appear to be the most promising solutions due to their availability,

ease-of-use and portability. In subsequent sections we develop high performance overlay-based

accelerators designs using Xillybus and RIFFA, mainly focused on PCIe-based solutions.

5.3 Overlay Integration

A block diagram of the proposed overlay accelerator system is shown in Figure 5.1. The

memory subsystem provides a bridge between the overlay on the FPGA fabric and the ARM

processor on a Zynq SoC via the AXI bus (or directly to the memory via the PCIe link). For the

82

Table 5.1: Theoretical bandwidth of typical memory interfaces.

Interface Frequency Upstream BW Downstream BW Ports/Lanes Total BW1

AXI HP 150 MHz 1200 MB/s 1200 MB/s 4 9600 MB/s
AXI ACP 150 MHz 1200 MB/s 1200 MB/s 1 2400 MB/s
PCIe Gen2 250 MHz 500 MB/s 500 MB/s 8 8000 MB/s
PCIe Gen3 250 MHz 984 MB/s 984 MB/s 8 15800 MB/s

1 In a streaming interface, the throughput is limited by either the upstream or downstream BW,
depending on the number of inputs or outputs, and so the maximum theoretical throughput
would be half of the total bandwidth reported here.

AXI bus-based overlay, two 32-bit FIFOs are used to connect a single 32-bit linear TM overlay

with the memory subsystem. For the PCIe-based overlay, we propose replicating four 32-bit

linear TM overlays to make full use of the 128-bit data bandwidth. The four overlay instances

can implement multiple compute kernels at runtime and thus reduce the II to a quarter of that of

a single overlay. Data transfers between the internal memory subsystem, the DDR SDRAM and

the offchip DRAM are under the control of a scatter-gather DMA engine.

5.3.1 Xillybus

Xillybus is a portable, easy to use DMA-based data transfer solution which provides a simple

abstraction of the AXI/PCIe interfaces. There is no prerequisite for knowledge of the AXI or

PCIe protocols as all the low-level design is packaged into an IP core. One side of the Xillybus

IP core is connected to the host processor, while the other side communicates with two standard

FIFOs, providing six signals to control the data flow, as shown in Figure 5.2. The host processor

can be either the ARM processor of the Xilinx Zynq SoC for the AXI bus-based solution (AXI-

Xillybus) or a PC based x86 CPU for the PCIe-based solution (PCIe-Xillybus).

After the driver installation and a system reboot with the FPGA programmed by the Xillybus

bitstream, several device files such as /dev/xillybus write 32(128) and /dev/xillybus read 32(128)

are generated by the host driver like named pipes. These device files can be read from and

written to like any file using basic Linux commands such as write and read on the Linux system.

Xillybus also provides an IP core factory for users to customize multiple streaming device files

and seekable device files which have access to the standard RAM of the FPGA.

CHAPTER 5: SYSTEM INTEGRATION 83

Offchip DRAM
x86-64 CPU

Memory Subsystem

FPGA

PC

Linear TM Overlay

Input FIFO Output FIFO

Linear TM Overlay

Linear TM Overlay

Linear TM Overlay

[31:0]

[63:32]

[95:64]

[127:96]

[31:0]

[63:32]

[95:64]

[127:96]

DDR SDRAM

DMA Engine
AXI

P
C

Ie

DIMM

DRAM Controller

 ARM Cortex-A9

Zynq-PS

Figure 5.1: The proposed overlay accelerator system.

5.3.2 RIFFA

RIFFA has a relatively more complicated framework, as shown in Figure 5.3. It is mainly

comprised of three layers. On the bottom layer, an RX engine and a TX engine are connected

to the vendor-specific PCIe Endpoint IP core, which bridges the connection between RIFFA

and the host CPU. The middle layer supports up to 12 communication channels per FPGA, and

these channels send packets to the TX engine and receive packets from the RX engine through

a scatter-gather DMA engine. The user IP core which connects to the RX/TX FIFOs from the

communication channels, is located on the top layer.

Similar to Xillybus, an example design for data acquisition (chnl test.v) is provided with

84

Host
Processor

Xillybus
IP core

Input
FIFO

full

wr_en

data

empty

rd_en

data

Output
FIFO

FPGA

User
Application

Logic

empty

rd_en

data

full

wr_en

data

Software
Application

Code

/dev/xillybus_write_32

/dev/xillybus_read_32

Device Files

File I/O

File I/O

ARM Processor

Software
Application

Code

Device Files

File I/O

File I/O

x86 CPU

AXI/PCIe

/dev/xillybus_write_128

/dev/xillybus_read_128

Figure 5.2: Xillybus framework.

driver and software code for testing (testutil.c). In this example, one sample channel is used to

receive data from the host via the RX engine and send the same amount of data back to the host

via the TX engine. For a more complicated design, multiple channels (up to 12 per FPGA) can

be instantiated to integrate with different user cores independently.

5.4 Experimental Evaluations

We conducted experiments for both the AXI bus-based and PCIe-based overlay accelerators.

For the AXI bus-based system, the experimental software runs on the ARM processor of the

Xilinx ZedBoard. For the PCIe-based accelerators (implemented using both PCIe-Xillybus and

RIFFA), the experiments are run on a Linux workstation (six 3.5 GHz Intel Xeon E5-1650 cores)

with a Xilinx VC707 evaluation board plugged into the PCIe Gen2 slot of the motherboard.

CHAPTER 5: SYSTEM INTEGRATION 85

Vendor-specific
PCIe Endpoint

rd
_

va
lid

rd
_

re
a

d
y

rd
_

d
a

ta

P
C

Ie
 li

n
k

RX Engine TX Engine

User IP Core

RX
FIFO

TX
FIFO

w
r_

re
a

d
y

w
r_

va
lid

w
r_

d
a

ta

Channel Channel

Channels Channel

RIFFA IP core

PC Memory

RIFFA Driver

RIFFA API

User
Application

FPGA

PC

RX DEMUX TX MUX

Figure 5.3: RIFFA framework.

5.4.1 AXI-Xillybus System

The AXI-Xillybus system is using one 32-bit wide AXI ACP port for data transmission,

running at a frequency of 100 MHz. Hence the theoretical total bandwidth of this system is 800

MB/s, and the maximum streaming throughput is 400 MB/s in a full-duplex system.

5.4.1.1 AXI-Xillybus Loopback test

Before the accelerator system can be developed, we first ensure that the demonstration bundle

provided by the Xillybus vendor operates correctly on our Zynq-based system. The demonstra-

86

tion bundle includes an example FPGA design containing just a single FIFO used to loop the

data back, along with a device driver and sample software code. We evaluate the performance

of Xillybus by testing the round trip data transmission throughput using the default settings.

As shown in the code of Figure 5.4, the input (user w write) and output (user r read) pipes are

connected to the same FIFO in a loopback fashion.

1 // 32-bit loopback
2 fifo_32x512 fifo_32
3 (
4 .clk(bus_clk),
5 .srst(!user_w_write_32_open && !user_r_read_32_open),
6 .din(user_w_write_32_data),
7 .wr_en(user_w_write_32_wren),
8 .rd_en(user_r_read_32_rden),
9 .dout(user_r_read_32_data),

10 .full(user_w_write_32_full),
11 .empty(user_r_read_32_empty)
12)

Figure 5.4: AXI-Xillybus 32-bit loopback FIFO connection.

Figure 5.5 shows a simplified block diagram of the loopback structure. Xillybus.v provides

the AXI bus-based Xillybus IP core connected to the ARM processor on a ZedBoard. And the

top level Xillydemo.v wrapper file is used to integrate to the application logic. In this specific

case, there is no application logic other than the single FIFO connected in loopback mode. After

implementing the design and programming the bistream, the FPGA system is complete. We

then use a simple high-level language program running on the host CPU (given in Figure 5.6) to

measure the round-trip bandwidth.

In the host program, the write function and read function are executing sequentially, which

means the read process has to wait until the write process has finished. It is inefficient for a

full-duplex interface to work in half-duplex mode, and so as to make full use of the Xillybus

IP core, we adopt a multi-threading technique (using Pthreads) to improve its performance by

creating two different threads for the write and read functions respectively, as shown in the code

of Figure 5.7.

5.4.1.2 AXI-Xillybus based Linear TM Overlay Accelerator

As previously discussed, Xillybus provides multiple streaming device files and seekable de-

vices files which have access to the memory array. The accelerator and its data streams are shown

CHAPTER 5: SYSTEM INTEGRATION 87

ARM
Processor

Xillybus
IP core

32-bit
Standard

FIFO

full

wr_en

data

empty

rd_en

data

AXI bus

Xillybus.vXillydemo.v (top module)

Figure 5.5: AXI-Xillybus loopback structure.

in Figure 5.8. In our design, two 32-bit streaming device files are instantiated for data acquisition

and one 32-bit seekable device file is responsible for the instruction load and overlay setup.

5.4.1.3 Results and Comparisons

The bandwidth of the loopback test for AXI-Xillybus using different data block sizes is

shown in Figure 5.9. As seen from this diagram, the single-threaded loopback test saturates

at a throughput of around 150 MB/s (maximum of 160 MB/s) when the transfer size exceeds

8K words, while the multi-thread loopback test saturates (with a maximum throughput of 330

MB/s) when the transfer size exceeds 500K words. The two dashed lines indicate the theoretical

throughput of the 32-bit AXI-ACP port running at 100 MHz. The throughput of the multi-thread

test surpasses that of the single-thread test for data block sizes exceeding 64K words, and for

large block sizes achieves approximately twice the throughput. Creating Pthreads introduces a

significant overhead for smaller transfer sizes, thus the multi-threading version is only applicable

for large data transfers.

We evaluate the performance of the proposed single DSP V3 overlay based accelerator (re-

88

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <unistd.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <sys/time.h>
9

10 int fdr32 = 0;
11 int fdw32 = 0;
12 int N = 0;
13 int *array_input;
14 int *array_hardware;
15 struct timeval tv1, tv2;
16 int main(int argc, char *argv[]) {
17 fdr32 = open("/dev/xillybus_read_32", O_RDONLY);
18 fdw32 = open("/dev/xillybus_write_32", O_WRONLY);
19 N = atoi(argv[1]);
20 if (fdr32 < 0 || fdw32 < 0) {
21 perror("Failed to open devfiles");
22 exit(1);
23 }
24 //allocate memory
25 array_input = (int*)malloc(N*sizeof(int));
26 array_hardware = (int*)malloc(N*sizeof(int));
27 //initialize the inputs and outputs
28 for(int i = 0; i < N; i++){
29 array_input[i] = i;
30 array_hardware[i] = 0;
31 }
32 //Measure the excution time
33 gettimeofday(&tv1, NULL);
34 write(fdw32, array_input, sizeof(int)*N);
35 write(fdw32, NULL, 0); //an indicator at the end of writing data
36 read(fdr32, array_hardware, sizeof(int)*N);
37 gettimeofday(&tv2, NULL);
38 for(i = 0; i < N; i++){
39 if(array_input[i] != array_hardware[i]) {
40 printf("recv[%d]: %d , expected %d \n\r", i, array_hardware[i], array_input[i

]);
41 return;
42 }
43 }
44 printf("round-trip bw: %f MB/s\n", N*4.0*2/1024/1024/((tv2.tv_sec-tv1.tv_sec)+(

tv2.tv_usec-tv1.tv_usec)/1000000);
45 return;
46 }

Figure 5.6: Xillybus single-thread program in C.

ferred to as AXI-Xillybus-V3) and compare it to VectorBlox MXP [26] in terms of bandwidth

and area consumption, using a set of kernels extracted from compute intensive applications from

the literature [2, 3] (the DFG kernels in graphical format are shown in Appendix A), shown

in Table 5.2. Both AXI-Xillybus-V3 and MXP are running on Xillinux-2.0, which is the lat-

est Linux distribution released for ZedBoard (kernel 4.4), with AXI-Xillybus using the Pthread

multi-threading technique with a data block transfer size of 1M words.

CHAPTER 5: SYSTEM INTEGRATION 89

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <errno.h>
4 #include <fcntl.h>
5 #include <unistd.h>
6 #include <sys/types.h>
7 #include <sys/stat.h>
8 #include <sys/time.h>
9 #include <pthread.h>

10
11 #define VP void*
12 #define NTH 2
13 int fdr32 = 0;
14 int fdw32 = 0;
15 int N = 0;
16 int *array_input;
17 int *array_hardware;
18 struct timeval tv1, tv2;
19 VP sample_1(VP arg) {
20 write(fdw32, array_input, sizeof(int)*N);
21 write(fdw32, NULL, 0);
22 pthread_exit(NULL);
23 }
24 VP sample_2(VP arg) {
25 read(fdr32, array_hardware, sizeof(int)*N);
26 pthread_exit(NULL);
27 }
28 int main(int argc, char *argv[]) {
29 fdr32 = open("/dev/xillybus_read_32", O_RDONLY);
30 fdw32 = open("/dev/xillybus_write_32", O_WRONLY);
31 N = atoi(argv[1]);
32 if (fdr32 < 0 || fdw32 < 0) {
33 perror("Failed to open devfiles");
34 exit(1);
35 }
36 //allocate memory
37 array_input = (int*)malloc(N*sizeof(int));
38 array_hardware = (int*)malloc(N*sizeof(int));
39 //initialize the inputs and outputs
40 for(int i = 0; i < N; i++){
41 array_input[i] = i;
42 array_hardware[i] = 0;
43 }
44 // Creation of threads
45 pthread_t tid[NTH];
46 int value[NTH] = {1,2};
47 pthread_create(&tid[0], NULL, &sample_1, &value[0]);
48 pthread_create(&tid[1], NULL, &sample_2, &value[1]);
49 // Synch of threads in order to exit normally
50 gettimeofday(&tv1, NULL);
51 for(int loop = 0; loop < NTH; loop++) {
52 pthread_join(tid[loop], NULL);
53 }
54 gettimeofday(&tv2, NULL);
55 for(i=0; i<N; i++){
56 if(array_input[i] != array_hardware[i]) {
57 printf("recv[%d]: %d , expected %d \n\r", i, array_hardware[i], array_input[i

]);
58 return;
59 }
60 }
61 printf("round-trip bw: %f MB/s\n", N*4.0*2/1024/1024/((tv2.tv_sec-tv1.tv_sec)+(

tv2.tv_usec-tv1.tv_usec)/1000000);
62 return;
63 }

Figure 5.7: Xillybus multi-threading program in C.

90

Xillybus
IP core

Input
FIFO

full

wr_en

data

empty

rd_en

data

Output
FIFO

FPGA

Linear
TM Overlay

empty

rd_en

data

full

wr_en

data

AXI

/dev/xillybus_mem_32

/dev/xillybus_write_32

/dev/xillybus_read_32

ARM
 Processor

Memory
Array

Figure 5.8: Linear overlay integrated with AXI-Xillybus.

0

50

100

150

200

250

300

350

400

450

Th
ro

u
gh

p
u

t
in

 M
B

/s

Transfer size in words (32-bit)

single-thread multi-thread Theo_single Theo_multi

Figure 5.9: AXI-Xillybus loopback throughput.

Figure 5.10 shows the performance of a single 32-bit linear TM overlay (AXI-Xillybus-V3)

and a 16-lane 32-bit MXP (MXP-V16) implemented on a ZedBoard for the benchmarks given

in Table 5.2. As seen from the figure, MXP-V16 outperforms AXI-Xillybus-V3 over all bench-

marks (with the exception of ‘chebyshev’). Table 5.3 shows the hardware resource usage of

AXI-Xillybus-V3 and MXP-V16. As seen from this table, AXI-Xillybus-V3 is much more area

efficient, and consumes only 19.8% LUTs, 26.1% FFs, 7.6% BRAMs and 7.1% DSP blocks,

CHAPTER 5: SYSTEM INTEGRATION 91

Table 5.2: DFG characteristics of benchmark set.

Benchmark Characteristics
No. Name I/O graph op graph graph

nodes edges nodes depth width

1. chebyshev 1/1 12 7 7 1
2. mibench 3/1 22 13 6 3
3. qspline 7/1 50 25 8 6
4. fft 6/4 24 10 3 4
5. kmeans 16/1 39 23 5 8
6. mm 16/1 31 15 4 8
7. spmv 16/2 30 14 4 8
8. stencil 15/2 30 14 3 6

compared to MXP-V16.

1 2 3 4 5 6 7 8
0

200

400

600

800

1,000

M
B

/s

AXI-Xillybus-V3
MXP-V16

(a) Data processing throughput in MB/s

1 2 3 4 5 6 7 8
0

200

400

600

800

M
O

PS

AXI-Xillybus-V3
MXP-V16

(b) Throughput in MOPS

Figure 5.10: Performance comparison for the benchmarks using a transfer size of 1M words.

The MXP memory system is based on one 64-bit AXI HP port running at a frequency of 110

MHz while AXI-Xillybus is based on a single 32-bit AXI ACP port running at a frequency of 100

92

MHz. This corresponds to a theoretical maximum throughput of 880 MB/s for MXP-V16 and

400 MB/s for AXI-Xillybus-V3. As seen from Figure 5.10, MXP-V16 achieves a throughput of

460.6 MB/s (52.3% of theoretical maximum) on average while AXI-Xillybus has a throughput

of 226.6 MB/s (56.6% of theoretical maximum) on average. The throughput of AXI-Xillybus is

almost half of that of MXP-V16, mainly due to AXI-Xillybus using only 32-bits of the available

64-bit ACP port while MXP-V16 is making full use of the 64-bit HP port.

Table 5.3: Area overhead of AXI-Xillybus-V3 and MXP.

System Resource Consumption
LUTs FFs BRAMs DSPs

AXI-Xillybus-V3 5,747 5,798 5 8
MXP-V16 28,974 22,174 66 112
Available 53,200 106,400 140 220

Although the AXI bus-based Xillybus provides an area efficient interface solution for the

Xilinx Zynq SoC, the throughput is still far below the theoretical maximum shown in Table 5.1.

This is mainly due to not making good use of the available HP/ACP ports (Xillybus uses only

one 32-bit port which is operating at a frequency of 66.7% of the theoretical maximum that the

AXI bus on Zynq can support).

5.4.2 PCIe System

Our PCIe system is based on the 8-lane Gen2 PCIe interface running at a frequency of 250

MHz, which corresponds to a maximum bandwidth of 8000 MB/s and hence a maximum stream-

ing throughput of 4000 MB/s for a full-duplex system.

5.4.2.1 PCIe-Xillybus Loopback test

Xillybus has been upgraded to a new version (PCIe-Xillybus) to support high performance

PCIe interface communication since 2015. The block diagram of PCIe-Xillybus for data loop-

back is almost the same as Figure 5.5, except that the 32-bit FIFO is replaced with a 128-bit FIFO

and module Xillybus.v (including the Xillybus IP core and a Xilinx 7 series integrated block for

PCIe) is connected to an HP Z420 workstation via the PCIe link, as shown in Figure 5.11. Sim-

CHAPTER 5: SYSTEM INTEGRATION 93

ilar to AXI-Xillybus, we developed two host programs to evaluate the round-trip bandwidth in

both half-duplex and full-duplex mode.

Xilinx
7 Series

Integrated
Block for

PCIe

Xillybus
IP core

128-bit
Standard

FIFO

full

wr_en

data

empty

rd_en

data

PCIe link
HP Z420

Workstation

Xillybus.vXillydemo.v (top module)

Figure 5.11: PCIe-Xillybus loopback structure.

5.4.2.2 PCIe-Xillybus based Linear TM Overlay Accelerator

Figure 5.12 shows the PCIe-Xillybus based overlay accelerator and its data streams. In this

design, two 128-bit streaming device files are instantiated for data acquisition and one 128-bit

seekable device file is responsible for instruction load and overlay setup.

Xilinx
7 Series

Integrated
Block for

PCIe

Xillybus
IP core

128-bit
Input
FIFO

full

wr_en

data

empty

rd_en

data

128-bit
Output

FIFO

FPGA

Linear
TM Overlay

empty

rd_en

data

full

wr_en

data

/dev/xillybus_mem_128

/dev/xillybus_write_128

/dev/xillybus_read_128

HP Z420
Workstation

Memory
Array

PCIe

Figure 5.12: Linear overlay integrated with PCIe-Xillybus.

94

5.4.2.3 RIFFA Loopback test

Similarly, a loopback design using RIFFA was also implemented, similar to that of Xillybus,

as shown in Figure 5.13. A first word fall through (FWFT) FIFO is used for data loop back, and

the RIFFA IP core is acting as the bridge between the vendor specific PCIe Endpoint and the

FWFT FIFO. Data transmission is under the control of a finite state machine (FSM), as shown in

Figure 5.14. Since the upstream transfers and downstream transfers are functioning in different

processing states, it is not possible to achieve full-duplex data transmission.

Xilinx 7 Series
Integrated Block for PCIe

rd
_

va
lid

rd
_

re
a

d
y

rd
_

d
a

ta

HP Z420 Workstation

P
C

Ie
 b

u
s

RX Engine TX Engine

FWFT FIFO

RX
FIFO

TX
FIFO

w
r_

re
a

d
y

w
r_

va
lid

w
r_

d
a

ta

Channel Channel

Channels Channel

RIFFA IP core

FPGA

PC

RX DEMUX TX MUX

Figure 5.13: RIFFA loopback block diagram.

Unlike Xillybus, RIFFA has been developed along with its own software APIs, making soft-

ware development relatively easy. Table 5.4 presents a detailed description of the major software

CHAPTER 5: SYSTEM INTEGRATION 95

S0 S1

S2S3

RX

count to
RX_LEN

count to
TX_LEN

S0: wait for RX
S1: RX process
S2: wait for TX
S3: TX process

Figure 5.14: RIFFA FSM control for RX/TX.

APIs in C/C++. A simple Linux host program for bandwidth evaluation is shown in Figure 5.15.

As mentioned previously, the RIFFA hardware was not developed for full-duplex data transmis-

sion. Hence the fpga send function and fpga recv function will execute sequentially and it is

useless to use multi-threading techniques as was done for Xillybus.

Table 5.4: RIFFA software APIs in C/C++. [5]

Fuction Name and Description

fpga t *fpga open (int id)
Initialize the FPGA with a specific ID and return a pointer to the fpga t structure.

void fpga close (fpga t *fpga)
Refresh the memory and resources for the specified FPGA.

int fpga send (fpga t *fpga, int chnl, void *data, int len, int offset, int last, long timeout)
Send len 32-bit words from host CPU to FPGA channel chnl.
The parameters len, offset, and last are sent to the FPGA channel. timeout defines an expiration time for the transfer.

int fpga recv (fpga t *fpga, int chnl, void *data, int len, long timeout)
Receive a block transfer size of len 32-bit words from the FPGA channel chnl to the data buffer.
The FPGA specifies an offset starting address to restore received data. timeout has the same meaning as before.

5.4.2.4 RIFFA based Linear TM Overlay Accelerator

Integration of the linear TM overlay with RIFFA is quite similar to that of Xillybus, except

that the standard FIFOs are replaced with FWFT FIFOs. Four separate 32-bit depth-8 V3 over-

lays are connected (in parallel) with the 128-bit FWFT FIFOs to make full use of the data width.

Although RIFFA has no access to the FPGA RAMs directly, it is possible to load the instructions

and registers by customizing the FSM control, as shown in Figure 5.17. Compared with the

original FSM, a new state for overlay initialization is added. The RX (view from the integrated

96

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include "timer.h"
4 #include "riffa.h"
5 #define NUM_TESTS 100
6
7 int main(int argc, char** argv) {
8 fpga_t * fpga;
9 int id;

10 int chnl;
11 size_t numWords;
12 int sent;
13 int recvd;
14 unsigned int * sendBuffer;
15 unsigned int * recvBuffer;
16 int err;
17 id = atoi(argv[2]);
18 chnl = atoi(argv[3]);
19 numWords = atoi(argv[4]);
20 GET_TIME_INIT(3);
21 // Get the device with id
22 fpga = fpga_open(id);
23 // Malloc the arrays
24 sendBuffer = (unsigned int *)malloc(numWords*4);
25 if (sendBuffer == NULL) {
26 printf("Could not malloc memory for sendBuffer\n");
27 fpga_close(fpga);
28 return -1;
29 }
30 recvBuffer = (unsigned int *)malloc(numWords*4 + 4);
31 recvBuffer +=1;
32 for (int j = 0; j < NUM_TESTS + 1; ++j) {
33 // Initialize the data
34 for (int i = 0; i < numWords; i++) {
35 sendBuffer[i] = i+1;
36 recvBuffer[i] = 0;
37 }
38 GET_TIME_VAL(0);
39 // Send the data
40 sent = fpga_send(fpga, chnl, sendBuffer, numWords, 0, 1, 25000);
41 printf("Test %d: words sent: %d\n", j, sent);
42 GET_TIME_VAL(1);
43 if (sent != 0) {
44 // Recv the data
45 recvd = fpga_recv(fpga, chnl, recvBuffer, numWords, 25000);
46 printf("Test %d: words recv: %d\n", j, recvd);
47 }
48 GET_TIME_VAL(2);
49 // Check the data
50 for (i = 4; i < recvd; i++) {
51 if (recvBuffer[i] != sendBuffer[i]) {
52 printf("recvBuffer[%d]: %d, expected %d\n", i, recvBuffer[i], sendBuffer[i]);
53 return;
54 }
55 }
56 if (j > 0) {
57 printf("send bw: %f\n", sent*4.0/1024/1024/((TIME_VAL_TO_MS(1) -

TIME_VAL_TO_MS(0))/1000.0));
58 printf("recv bw: %f\n", recvd*4.0/1024/1024/((TIME_VAL_TO_MS(2) -

TIME_VAL_TO_MS(1))/1000.0));
59 }
60 }
61 // Done with device
62 fpga_close(fpga);
63 }

Figure 5.15: RIFFA host program in C.

CHAPTER 5: SYSTEM INTEGRATION 97

overlay side) is divided into two processes: one for overlay initialization, and the other one for

data transmission.

Xilinx 7 Series
Integrated Block for PCIe

rd_valid

rd_ready

rd_data

P
C

Ie
 li

n
k

RX Engine TX Engine

Overlay

RX
FIFO

TX
FIFO

wr_ready

wr_valid
wr_data

Channel Channel

Channels Channel

RIFFA IP core

FPGA

PC

RX DEMUX TX MUX

FWFT
FIFO

FWFT
FIFO

HP Z420 Workstation

Figure 5.16: Linear overlay integrated with RIFFA.

5.4.2.5 Results and Comparisons

The bandwidth of the loopback test for PCIe-Xillybus using different data block sizes is

shown in Figure 5.18. As seen from this diagram, the data transmission is very slow when the

transfer size is less than 32K words. The single-threaded loopback test saturates at a throughput

of 1900 MB/s when the transfer size exceeds 128K words, while the multi-thread loopback test

saturates (with a maximum throughput of 2300 MB/s) when the transfer size exceeds 500K

98

S0

S1

S3S4

RX

count to
RX_LEN

count to
TX_LEN

S0: wait for RX
S1: RX: overlay initialization
S2: RX: data transmission
S3: wait for TX
S4: TX process

S2

data flag

Figure 5.17: FSM control for RIFFA based overlay system.

words. The two dashed lines indicate the theoretical bandwidth of the Gen2x8 PCIe interface

running at 250 MHz. The throughput of the multi-thread test surpasses that of the single-thread

test for data block sizes exceeding 256K words, and achieves around 1.2× higher bandwidth

when the transferring 1M words. Although the throughput of the multi-thread test is not as

expected (twice that of the single-thread test), it shows better performance for the transmission

of large data blocks.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Th
ro

u
gh

p
u

t
in

 M
B

/s

Transfer size in words (32-bit)

single-thread multi-thread Theo_single Theo_multi

Figure 5.18: PCIe-Xillybus loopback throughput.

The bandwidth for RIFFA data loopback is shown in Figure 5.19. As seen from this diagram,

CHAPTER 5: SYSTEM INTEGRATION 99

both the upstream transfers (read) and downstream transfers (write) saturate at around 2.85 GB/s

when the transfer size is equal to 128K sample words, corresponding a total bandwidth of 2.85

GB/s, as read and write cannot happen simultaneously. The bandwidth degrades slightly when

the transfer size exceeds 128k words due to the overutilization of BRAMs.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

3000.0

3500.0

4000.0

4500.0

Th
ro

u
gh

p
u

t
in

 M
B

/s

Transfer size in words (32-bit)

write read theoretical

Figure 5.19: RIFFA loopback throughput.

Figure 5.20 shows the performance of four 32-bit linear TM V3 overlay integrated with PCIe-

Xillybus (PCIe-Xillybus-V3) and RIFFA (RIFFA-V3), respectively. AXI-Xillybus uses a block

size of 1M words with the Pthread multi-threading technique, while RIFFA uses a block size of

128K words. Both PCIe-Xillybus-V3 and RIFFA-V3 are running on an Ubuntu 14.04.5 worksta-

tion (six 3.5 GHz Intel Xeon E5-1650 cores) with a Xilinx VC707 evaluation board plugged into

the PCIe Gen2 slot of the motherboard. As can be seen from Figure 5.20, RIFFA-V3 achieves an

average throughput of 1300 MB/s (32.5% of theoretical maximum), which is around 3.6× better

than PCIe-Xillybus-V3 with an average throughput of 358 MB/s (9% of theoretical maximum).

The ratio of the throughput in MOPS is proportional to that of data processing throughput in

MB/s.

Table 5.5 shows the hardware resource usage of RIFFA-V3 and PCIe-Xillybus-V3. As seen

from this table, RIFFA-V3 consumes 15% fewer LUTs, 49% more FFs, 19× more BRAMs

and same DSP blocks in comparison with PCIe-Xillybus-V3. There is no big difference among

100

1 2 3 4 5 6 7 8
0

1,000

2,000

M
B

/s

PCIe-Xillybus-V3
RIFFA-V3

(a) Data processing throughput in MB/s

1 2 3 4 5 6 7 8
0

1,000

2,000

M
O

PS

PCIe-Xillybus-V3
RIFFA-V3

(b) Throughput in MOPS

Figure 5.20: Performance comparison for the benchmarks.

the usage of logic slices and the DSP blocks except for the BRAMs. This is due to the half-

duplex mode of RIFFA interface, resulting in large consumptions in BRAMs to implement two

FWFT FIFOs with a large depth. Developing a full-duplex RIFFA based system would be very

beneficial to minimize the resource usage, especially the BRAMs.

Table 5.5: Area overhead of RIFFA-V3 and PCIe-Xillybus-V3.

System Resource Consumption
LUTs FFs BRAMs DSPs

PCIe-Xillybus-V3 16,027 12,488 14.5 32
RIFFA-V3 13,657 18,581 289.5 32
Available 303,600 607,200 1,030 2,800

5.5 Discussion

We saw that AXI-Xillybus-V3 represents a very area efficient implementation compared with

VectorBlox MXP-V16, at the expense of around half of the throughput. However, AXI-Xillybus

CHAPTER 5: SYSTEM INTEGRATION 101

has only half the theoretical bandwidth of MXP, as Xillybus uses just 32-bits of an ACP port

while MXP uses the full 64-bits of an HP port. If Xillybus were modified to use a 64-bit

port (something that will be left for future work), and two parallel V3 overlays were imple-

mented, both implementations would then have similar throughput. The AXI-Xillybus dual V3

implementation would require significantly fewer hardware resources (approximately 20% of the

LUTS and 8% of the hard macros (BRAM and DSP) required by MXP on Zynq. Thus, the linear

TM overlay represents a relatively efficient implementation when FPGA resources are limited,

as would be the case when an accelerator was used with other major subsystems in a design.

PCIe-Xillybus-V3 and RIFFA-V3 are proposed for more high-performance centric accel-

erator systems. The PCIe-Xillybus-V3 has a 1.6× better performance compared to the AXI-

Xillybus-V3, at the expense of more than twice of resource consumption. However, the through-

put of PCIe-Xillybus-V3 is slightly less than that of MXP-V16, as it achieves only 9% of the

theoretical maximum of the PCIe Gen2x8 interface. Among all the 4 implementations, RIFFA-

V3 shows the best performance, with a throughput of 1300 MB/s on average. However, the

half-duplex mode of RIFFA-V3 makes it suffer from a large number of BRAMs.

5.6 Summary

In this chapter, we have proposed a number of overlay accelerator systems based on two

different memory interfaces, AXI and PCIe. The AXI-Xillybus-V3 represents a very area ef-

ficient implementation compared with VectorBlox MXP-V16, at the expense of around half of

the throughput. If Xillybus were modified to use a 64-bit ACP port and two parallel V3 over-

lays were implemented, it would be likely to achieve a throughput close to MXP-V16. The

RIFFA-V3 has a 3.6× better performance compared to the PCIe-Xillybus-V3, and a 5.7× better

performance than AXI-Xillybus-V3. However, the existing RIFFA implementation consumes a

large number of BRAMs. RIFFA-V3 appears to be the most promising overlay accelerator for

high computing purposes, however, there is a need to develop a full-duplex system, which will

not only reduce the BRAMs utilization, but it will also double the theoretical throughput.

Chapter 6

Conclusions and Future Work

Coarse-grained overlay architectures have appeared to be a promising method to improve

the design productivity of FPGAs by avoiding the tedious fine-grained placement and routing

process. Time-multiplexing the overlay allows it to change its behavior on a cycle-by-cycle basis

while the compute kernel is executing, thus allowing sharing of the limited FPGA resources, at

the expense of a higher II and hence a reduced throughput. However, most of the existing CGRA-

like TM overlays still suffer from relatively large area overheads due to the routing resources and

instruction storage requirements. Reducing the area overhead for these overlays, specifically for

the routing network, and utilizing the fast context switch capabilities of these overlays are likely

to result in better usability with corresponding improvements in design productivity.

In this thesis, we propose an area efficient overlay based on a linear array of time-multiplexed

FUs, which significantly reduces the FPGA hardware requirements while adding just a modest

performance penalty, compared to the existing TM overlays. We explore the design space of

this overlay, and present a number of architectural enhancements along with new instruction

scheduling strategies to significantly improve the throughput and the latency compared to the

original overlay. A toolchain is developed to compile high level language descriptions of com-

pute intensive kernels onto the linear TM overlays, thus raising the hardware design to a higher

level of abstraction, while also reducing compile times significantly. The overlay subsystems

are integrated into complete hardware accelerator systems along with AXI or PCIe memory in-

terfaces to an ARM processor on the Zynq SoC or a host CPU on the HP Z420 workstation.

102

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 103

The performance of these hardware accelerators for a range of benchmarks is investigated and

performance results are presented and compared to a state-of-art TM overlay, VectorBlox MXP.

This chapter draws conclusions by summarizing all the contributions presented in this thesis and

outlines potential directions for future research.

6.1 Summary of Contributions

6.1.1 An Area-Efficient TM Overlay with Linear Interconnect

In Chapter 3, we proposed a resource efficient FPGA overlay that uses a linear connection

of time-multiplexed FUs based on the Xilinx DSP48E1 macro. This architecture enables a sig-

nificant reduction in the resource overheads compared to other TM overlays due to a reduction

in the instruction storage and interconnect resource requirements, assisted by a fully-pipelined,

architecture-aware FU design. While the proposed overlay exhibits a lower throughput than spa-

tially configured overlays due to the much larger II, it has a significantly reduced FPGA resource

requirement and a much lower context switching time. Our experimental evaluation shows that

for a range of benchmarks, the proposed overlay delivers a throughput which is 6× to 22× less

than the SC DSP-based overlay and Vivado implementations, but which uses 85% fewer eSlices

than the DSP-based overlay and just 35% more eSlices than the Vivado implementations.

6.1.2 Architectural Enhancements for the Proposed Overlay

In Chapter 4, we examined the limitations of the linear TM overlay presented in Chapter 3

and explored a number of architectural enhancements to improve the throughput. Interleaving

data transfer with instruction execution significantly reduces the II with a resulting increase in

throughput. Introducing write-back into the FU design and modifying the scheduling strategy

allows the overlay depth to be fixed. This eliminates the need to reconfigure the overlay if

the application kernel changes, making the overlay more general. These changes significantly

reduce the latency with just a small decrease in throughput. Compared to the original version, the

modified overlays (V1 to V4) can achieve up to 2.4× higher throughput in GOPS, 93.7% higher

compute efficiency in MOPS/eSlice and a 43.7% lower latency. The V3 overlay has the best

104

performance among all the modified overlays, as for a fixed data bandwidth, it has comparable

throughput with a significantly reduced latency.

6.1.3 Overlay Accelerator Systems based on AXI or PCIe Interface

In Chapter 5, we presented a number of overlay accelerator systems based on two differ-

ent memory interfaces, AXI and PCIe. The AXI-Xillybus-V3 represents a very area efficient

implementation compared with VectorBlox MXP-V16, at the expense of around half of the

throughput. This is mainly because Xillybus only uses half of the 64-bit ACP port. If Xilly-

bus were modified to use a 64-bit ACP port and two parallel V3 overlays were implemented,

it would be likely to achieve a throughput close to MXP-V16. PCIe-Xillybus-V3 and RIFFA-

V3 were proposed for more high-performance centric accelerator systems. The RIFFA-V3 has

a 3.6× better performance compared to the PCIe-Xillybus-V3, and a 5.7× better performance

than AXI-Xillybus-V3. However, the existing RIFFA implementation consumes a large number

of BRAMs. RIFFA-V3 appears to be the most promising overlay accelerator for high computing

purposes, however, there is a need to develop a full-duplex system, which will not only reduce

the BRAMs utilization, but it will also double the theoretical throughput.

6.2 Future Work

We have proposed a number of linear TM overlay accelerators which demonstrate benefits

such as area efficiency, high performance and fast context switching. Apart from these advan-

tages, there are still some potential directions which can be further explored. We summarize the

future work as follows:

6.2.1 Exploring More Applicable Interconnects

The proposed TM overlays were designed as a linear connection of highly pipelined time-

multiplexed FUs to achieve data processing using a quasi-streaming method. However, these

overlays are more applicable to the DFGs which have a small number of inputs and outputs. For

example, when the DFG has a large number of input ports, the first FU is over-utilized while the

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 105

rest of the FUs are in an idle state, resulting in an unbalanced FU utilization. A more customized

routing network such as an inverse cone-shaped cluster of FUs inspired from DeCO [38], may

overcome this problem and further reduce the II, compared to a direct linear interconnect of FUs.

6.2.2 Developing Better Instruction Schedules

Most of the existing CGRA architectures adopt Modulo scheduling [98], or a derivative al-

gorithm, to achieve a minimum II. However, Modulo scheduling is based on the assumption

that each operation node is executed in 1 cycle and the transfer of data between two arbitrary

FUs completes in 1 cycle, which is not realistic for highly pipelined architectures. In the map-

ping toolflow, our current instruction scheduling strategy is a simple ASAP scheduling for the

case that depth of the benchmarks is not larger than the number of FUs. However, the ASAP

scheduling may not achieve the best nodes allocation for the FUs as it is not heuristic. A sim-

plified version of list scheduling [107] referred to as Hu’s algorithm [108] could be adopted to

determine the minimum allocated nodes given a constraint to the number of FUs. By taking the

pipeline stages into account, the ASAP scheduling and the iterative greedy scheduling in this

thesis are reduced to that of multiprocessor scheduling as all the FUs are identical and hence

have the same latencies for different operations. This needs to be further investigated.

6.2.3 Improving the Memory Interfaces

The current version of AXI-Xillybus only uses half the width of the 64-bit ACP port (e.g. 32-

bits). If Xillybus were modified to use a full 64-bit ACP port and two parallel V3 overlays were

implemented, it would achieve a throughput close to MXP-V16. Further, most of the existing

memory solutions based on AXI HP interfaces do not use the full bandwidth available. Using just

two of the four 64-bit ports available would allow four overlays to be replicated thus achieving a

much higher performance. RIFFA-V3 appears to be the most promising memory interface for an

overlay accelerator for high throughput computing purposes, however, there is a need to develop

a full-duplex system, which will not only reduce the BRAMs utilization, but will also double the

theoretical throughput.

106

6.2.4 Python Productivity for the Overlays

In recent years, the FPGA vendor, Xilinx, has been active in exploring the use of Python

productivity for Zynq (PYNQ) [109] to improve design productivity and to allow an easier path

to FPGA application development and use. PYNQ is an open-source project which provides

a simple platform independent method to design high performance embedded applications on

the Zynq FPGA. It consists of API accessible reconfigurable libraries (or overlays) which are

programmable using Python in a browser based Jupyter Notebook. PYNQ has been quickly

adopted by the reconfigurable computing research community such as the SPARK data analytics

framework [110], deep recurrent neural network [111] and dynamic partial reconfiguration [112].

The proposed overlay accelerators would be of practical use if they were integrated within the

PYNQ project.

Appendix A

Example Benchmark DFGs [1–3]

Figure A.1: DFG of ‘chebyshev’ benchmark.

107

108

Figure A.2: DFG of ‘mibench’ benchmark.

Figure A.3: DFG of ‘qspline’ benchmark.

APPENDIX A: EXAMPLE BENCHMARK DFGS [1–3] 109

Figure A.4: DFG of ‘sgfilter’ benchmark.

Figure A.5: DFG of ‘fft’ benchmark.

Figure A.6: DFG of ‘kmeans’ benchmark.

110

Figure A.7: DFG of ‘mm’ benchmark.

Figure A.8: DFG of ‘spmv’ benchmark.

Figure A.9: DFG of ‘stencil’ benchmark.

Figure A.10: DFG of ‘poly5’ benchmark.

APPENDIX A: EXAMPLE BENCHMARK DFGS [1–3] 111

Figure A.11: DFG of ‘poly6’ benchmark.

Figure A.12: DFG of ‘poly7’ benchmark.

Figure A.13: DFG of ‘poly8’ benchmark.

References

[1] D. Bini and B. Mourrain, “Polynomial test suite, 1996.” [Online]. Available:
http://www-sop.inria.fr/saga/POL

[2] S. Gopalakrishnan, P. Kalla, M. B. Meredith, and F. Enescu, “Finding linear building-
blocks for RTL synthesis of polynomial datapaths with fixed-size bit-vectors,” in Int. Conf.
On Comput. Aided Design (ICCAD), 2007, pp. 143–148.

[3] C.-H. Hoy, V. Govindarajuz, T. Nowatzki, R. Nagaraju, Z. Marzecy, P. Agarwal, C. Fr-
ericks, R. Cofell, and K. Sankaralingam, “Performance evaluation of a DySER FPGA
prototype system spanning the compiler, microarchitecture, and hardware implementa-
tion,” in Int. Symp. on Performance Analysis of Syst. and Software (ISPASS), 2015, pp.
203–214.

[4] X. Ltd. 7 Series DSP48E1 Slice User Guide. [Online]. Available: www.xilinx.com

[5] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “RIFFA 2.1: A reusable inte-
gration framework for FPGA accelerators,” ACM Trans. on Reconfigurable Technol. and
Syst. (TRETS), vol. 8, no. 4, p. 22, 2015.

[6] D. Capalija and T. S. Abdelrahman, “A high-performance overlay architecture for
pipelined execution of data flow graphs,” in Proc. 23rd Int. Conf. Field Program. Logic
Appl. (FPL), 2013, pp. 1–8.

[7] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architecture based on DSP
blocks,” in Proc. 23rd Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM),
2015, pp. 25–28.

[8] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.

[9] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner, D. Neto, J. Wong,
P. Yiannacouras, and D. P. Singh, “From OpenCL to high-performance hardware on FP-
GAs,” in Proc. 22nd Int. Conf. Field Program. Logic Appl. (FPL), 2012, pp. 531–534.

[10] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski, “LegUp: high-level synthesis for FPGA-based processor/accelerator
systems,” in Proc. 19th Int. Symp. Field Program. Gate Arrays (FPGA), 2011, pp. 33–36.

112

http://www-sop.inria.fr/saga/POL
www.xilinx.com

REFERENCES 113

[11] D. Koch, F. Hannig, and D. Ziener, FPGAs for Software Programmers, 2016.

[12] R. Rashid, J. G. Steffan, and V. Betz, “Comparing performance, productivity and scal-
ability of the TILT overlay processor to OpenCL HLS,” in Proc. Int. Conf. Field-
Programmable Technol. (FPT), 2014, pp. 20–27.

[13] D. Koch, C. Beckhoff, and G. G. Lemieux, “An efficient FPGA overlay for portable cus-
tom instruction set extensions,” in Proc. 23rd Int. Conf. Field Program. Logic Appl. (FPL),
2013, pp. 1–8.

[14] M. Lam, “Software pipelining: An effective scheduling technique for VLIW machines,”
in ACM Sigplan Notices, vol. 23, no. 7, 1988, pp. 318–328.

[15] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki, and K. Sankar-
alingam, “Design, integration and implementation of the DySER hardware accelerator
into OpenSPARC,” in Proc. 18th Int. Symp. High Performance Comput. Archit. (HPCA),
2012, pp. 1–12.

[16] J. Coole and G. Stitt, “Adjustable-cost overlays for runtime compilation,” in Proc. 23rd
Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2015, pp. 21–24.

[17] K. Paul, C. Dash, and M. S. Moghaddam, “reMORPH: a runtime reconfigurable architec-
ture,” in Proc. 15th Euromicro Conf. Digit. Syst. Design (DSD), 2012, pp. 26–33.

[18] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for circuit portability
and fast placement and routing,” in Proc. Int. Conf. Hardware/Software Codesign and
Syst. Synthesis (CODES+ ISSS), 2010, pp. 13–22.

[19] K. Heyse, T. N. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt, “Efficient
implementation of virtual coarse grained reconfigurable arrays on FPGAs,” in Proc. 23rd
Int. Conf. Field Program. Logic Appl. (FPL), 2013, pp. 1–8.

[20] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically specialized datapaths
for energy efficient computing,” in Proc. Int. Symp. High Performance Comput. Archit.
(HPCA), 2011, pp. 503–514.

[21] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA overlays using
DSP blocks,” in Proc. Conf. Design, Autom. and Test in Europe (DATE), 2016, pp. 1628–
1633.

[22] C. Liu, H.-C. Ng, and H. K.-H. So, “QuickDough: a rapid FPGA loop accelerator design
framework using soft CGRA overlay,” in Proc. Int. Conf. Field-Programmable Technol.
(FPT), 2015, pp. 56–63.

[23] J. Gray, “GRVI-Phalanx: A massively parallel RISC-V FPGA accelerator,” in Proc. 24th
Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2016, pp. 17–20.

114

[24] N. Kapre and J. Gray, “Hoplite: Building austere overlay NoCs for FPGAs,” in Proc. 25th
Int. Conf. Field Program. Logic Appl. (FPL), 2015, pp. 1–8.

[25] D. Capalija and T. S. Abdelrahman, “Towards synthesis-free JIT compilation to com-
modity FPGAs,” in Proc. 19th Int. Symp. Field-Programmable Custom Comput. Mach.
(FCCM), 2011, pp. 202–205.

[26] A. Severance and G. G. Lemieux, “Embedded supercomputing in FPGAs with the Vector-
Blox MXP matrix processor,” in Proc. Int. Conf. Hardware/Software Codesign and Syst.
Synthesis (CODES+ ISSS), 2013, pp. 1–10.

[27] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and challenges,” Founda-
tions and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

[28] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,” IEEE Design
& Test of Comput., no. 4, pp. 18–25, 2009.

[29] G. Stitt, “Are field-programmable gate arrays ready for the mainstream?” IEEE Micro,
vol. 31, no. 6, pp. 58–63, 2011.

[30] S. Shukla, N. W. Bergmann, and J. Becker, “QUKU: A coarse grained paradigm for FP-
GAs,” in Proc. Dagstuhl Seminar, 2006.

[31] P. Yiannacouras, J. Rose, and J. G. Steffan, “The microarchitecture of FPGA-based soft
processors,” in Proc. Int. Conf. Compilers, Archit. and Synthesis for Embedded Syst.
(CASES), 2005, pp. 202–212.

[32] M. A. Kinsy, M. Pellauer, and S. Devadas, “Heracles: Fully synthesizable parameterized
mips-based multicore system,” in Proc. 21st Int. Conf. Field Program. Logic Appl. (FPL),
2011, pp. 356–362.

[33] A. Brant and G. G. Lemieux, “ZUMA: An open FPGA overlay architecture,” in Proc.
20th Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2012, pp. 93–96.

[34] C. E. LaForest and J. G. Steffan, “Octavo: an FPGA-centric processor family,” in Proc.
20th Int. Symp. Field Program. Gate Arrays (FPGA), 2012, pp. 219–228.

[35] A. D. Brant, “Coarse and fine grain programmable overlay architectures for FPGAs,”
Ph.D. dissertation, University of British Columbia, 2013.

[36] C. Liu, C. L. Yu, and H. K.-H. So, “A soft coarse-grained reconfigurable array based
high-level synthesis methodology: Promoting design productivity and exploring extreme
FPGA frequency,” in Proc. 21st Int. Symp. Field-Programmable Custom Comput. Mach.
(FCCM), 2013, pp. 228–228.

[37] K. Ovtcharov, I. Tili, and J. G. Steffan, “TILT: a multithreaded VLIW soft processor
family,” in Proc. 23rd Int. Conf. Field Program. Logic Appl. (FPL), 2013, pp. 1–4.

REFERENCES 115

[38] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, “DeCO: a DSP block based
FPGA accelerator overlay with low overhead interconnect,” in Proc. 24th Int. Symp. Field-
Programmable Custom Comput. Mach. (FCCM), 2016, pp. 1–8.

[39] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell, “Virtualized execution and
management of hardware tasks on a hybrid ARM-FPGA platform,” J. of Signal Process.
Syst., vol. 77, no. 1-2, pp. 61–76, 2014.

[40] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Are coarse-grained overlays ready for general
purpose application acceleration on FPGAs?” in Proc. 14th Int. Conf. on Pervasive, Intel.
and Comput. (PICom), 2016, pp. 586–593.

[41] R. Dimond, O. Mencer, and W. Luk, “CUSTARD-a customisable threaded FPGA soft
processor and tools,” in Proc. 15th Int. Conf. Field Program. Logic Appl. (FPL), 2005, pp.
1–6.

[42] F. Plavec, B. Fort, Z. G. Vranesic, and S. D. Brown, “Experiences with soft-core processor
design,” in Proc. 19th Int. Parallel and Distrib. Process. Symp. (IPDPS), 2005, p. 167b.

[43] J. Gaisler, E. Catovic, M. Isomaki, K. Glembo, and S. Habinc, “GRLIB IP core user’s
manual,” Gaisler research, 2007.

[44] T. Kranenburg and R. Van Leuken, “MB-LITE: A robust, light-weight soft-core imple-
mentation of the MicroBlaze architecture,” in Proc. Conf. Design, Autom. and Test in
Europe (DATE), 2010, pp. 997–1000.

[45] C. G. AB, “GRLIB IP core user’s manual,” 2017.

[46] H. Y. Cheah, S. A. Fahmy, and D. L. Maskell, “iDEA: A DSP block based FPGA soft
processor,” in Proc. Int. Conf. Field-Programmable Technol. (FPT), 2012, pp. 151–158.

[47] Xilinx, “MicroBlaze processor reference guide,” 2017.

[48] Altera, “Nios II processor reference handbook,” 2016.

[49] D. L. Weaver, OpenSPARC Internals: OpenSPARC T1/T2 CMT Throughput Computing.
Sun Microsystems, 2008.

[50] D. Lampret, “OpenRISC 1200 IP core specification,” 2001. [Online]. Available:
https://opencores.org

[51] S. Rhoads, “Plasma-most MIPS I(TM) opcodes,” 2009. [Online]. Available: https:
//opencores.org/project,plasma

[52] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The RISC-V instruction set
manual, volume i: Base user-level isa,” EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2011-62, 2011.

https://opencores.org
https://opencores.org/project,plasma
https://opencores.org/project,plasma

116

[53] R. Jia, C. Y. Lin, Z. Guo, R. Chen, F. Wang, T. Gao, and H. Yang, “A survey of open
source processors for FPGAs,” in Proc. 24th Int. Conf. Field Program. Logic Appl. (FPL),
2014, pp. 1–6.

[54] M. Labrecque, P. Yiannacouras, and J. G. Steffan, “Scaling soft processor systems,” in
Proc. 16th Int. Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2008, pp.
195–205.

[55] P. Yiannacouras, J. G. Steffan, and J. Rose, “Application-specific customization of soft
processor microarchitecture,” in Proc. 14th Int. Symp. Field Program. Gate Arrays
(FPGA), 2006, pp. 201–210.

[56] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, “The iDEA DSP block-based
soft processor for FPGAs,” ACM Trans. on Reconfigurable Technol. and Syst. (TRETS),
vol. 7, no. 3, p. 19, 2014.

[57] C. Hui Yan, S. Fahmy, and N. Kapre, “On data forwarding in deeply pipelined soft proces-
sors,” in Proc. 23rd Int. Symp. Field Program. Gate Arrays (FPGA), 2015, pp. 181–189.

[58] G. Schelle, J. Collins, E. Schuchman, P. Wang, X. Zou, G. Chinya, R. Plate, T. Mattner,
F. Olbrich, P. Hammarlund et al., “Intel nehalem processor core made FPGA synthesiz-
able,” in Proc. 18th Int. Symp. Field Program. Gate Arrays (FPGA), 2010, pp. 3–12.

[59] M. Labrecque and J. G. Steffan, “Improving pipelined soft processors with multithread-
ing,” in Proc. 17th Int. Conf. Field Program. Logic Appl. (FPL), 2007, pp. 210–215.

[60] B. Fort, D. Capalija, Z. G. Vranesic, and S. D. Brown, “A multithreaded soft processor
for SoPC area reduction,” in Proc. 14th Int. Symp. Field-Programmable Custom Comput.
Mach. (FCCM), 2006, pp. 131–142.

[61] R. Moussali, N. Ghanem, and M. A. Saghir, “Supporting multithreading in configurable
soft processor cores,” in Proc. Int. Conf. Compilers, Archit. and Synthesis for Embedded
Syst. (CASES), 2007, pp. 155–159.

[62] R. Dimond, O. Mencer, and W. Luk, “Application-specific customisation of multi-
threaded soft processors,” IEE Proc.-Comput. and Digital Tech., vol. 153, no. 3, pp. 173–
180, 2006.

[63] C. E. Laforest and J. H. Anderson, “Microarchitectural comparison of the MXP and Oc-
tavo soft-processor FPGA overlays,” ACM Trans. on Reconfigurable Technol. and Syst.
(TRETS), vol. 10, no. 3, p. 19, 2017.

[64] A. K. Jones, R. Hoare, D. Kusic, J. Fazekas, and J. Foster, “An FPGA-based VLIW pro-
cessor with custom hardware execution,” in Proc. 13th Int. Symp. Field Program. Gate
Arrays (FPGA), 2005, pp. 107–117.

REFERENCES 117

[65] R. Rashid, “A dual-engine fetch/compute overlay processor for fpgas,” Ph.D. dissertation,
University of Toronto, 2015.

[66] C. E. LaForest, “High-speed soft-processor architecture for FPGA overlays,” Ph.D. dis-
sertation, University of Toronto, 2015.

[67] C. Kozyrakis and D. Patterson, “Overcoming the limitations of conventional vector pro-
cessors,” ACM SIGARCH Comput. Archit. News, vol. 31, no. 2, pp. 399–409, 2003.

[68] P. Yiannacouras, J. G. Steffan, and J. Rose, “VESPA: portable, scalable, and flexible
FPGA-based vector processors,” in Proc. Int. Conf. Compilers, Archit. and Synthesis for
Embedded Syst. (CASES), 2008, pp. 61–70.

[69] J. Yu, G. Lemieux, and C. Eagleston, “Vector processing as a soft-core CPU accelerator,”
in Proc. 16th Int. Symp. Field Program. Gate Arrays (FPGA), 2008, pp. 222–232.

[70] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. Lemieux, “VEGAS:
soft vector processor with scratchpad memory,” in Proc. 19th Int. Symp. Field Program.
Gate Arrays (FPGA), 2011, pp. 15–24.

[71] A. Severance and G. Lemieux, “VENICE: a compact vector processor for FPGA applica-
tions,” in Proc. Int. Conf. Field-Programmable Technol. (FPT), 2012, pp. 261–268.

[72] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and VLIW architectures for em-
bedded multimedia benchmarks,” in Proc. 35th Int. Symp. Microarchitecture, 2002, pp.
283–293.

[73] E. D. H. EEMBC, “The embedded microprocessor benchmark consortium.” [Online].
Available: https://www.eembc.org

[74] P. Yiannacouras, J. G. Steffan, and J. Rose, “Fine-grain performance scaling of soft vec-
tor processors,” in Proc. Int. Conf. Compilers, Archit. and Synthesis for Embedded Syst.
(CASES), 2009, pp. 97–106.

[75] D. Lau, O. Pritchard, and P. Molson, “Automated generation of hardware accelerators
with direct memory access from ANSI/ISO standard C functions,” in Proc. 14th Int. Symp.
Field-Programmable Custom Comput. Mach. (FCCM), 2006, pp. 45–56.

[76] J. Yu, C. Eagleston, C. H.-Y. Chou, M. Perreault, and G. Lemieux, “Vector processing as
a soft processor accelerator,” ACM Trans. on Reconfigurable Technol. and Syst. (TRETS),
vol. 2, no. 2, p. 12, 2009.

[77] A. Severance, J. Edwards, H. Omidian, and G. Lemieux, “Soft vector processors with
streaming pipelines,” in Proc. 22nd Int. Symp. Field Program. Gate Arrays (FPGA), 2014,
pp. 117–126.

https://www.eembc.org

118

[78] K. Andryc, M. Merchant, and R. Tessier, “FlexGrip: A soft GPGPU for FPGAs,” in Proc.
Int. Conf. Field-Programmable Technol. (FPT), 2013, pp. 230–237.

[79] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon, M. P. Dru-
mond, R. Paul, S. Prasad, P. Valathol et al., “Enabling GPGPU low-level hardware explo-
rations with MIAOW: an open-source RTL implementation of a GPGPU,” ACM Trans. on
Archit. and Code Optimization (TACO), vol. 12, no. 2, p. 21, 2015.

[80] M. Al Kadi, B. Janssen, and M. Huebner, “FGPU: An SIMT-architecture for FPGAs,” in
Proc. 24th Int. Symp. Field Program. Gate Arrays (FPGA), 2016, pp. 254–263.

[81] P. Duarte, P. Tomas, and G. Falcao, “SCRATCH: an end-to-end application-aware soft-
GPGPU architecture and trimming tool,” in Proc. 50th Int. Symp. Microarchitecture, 2017,
pp. 165–177.

[82] C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched NoC for FPGA-based sys-
tems,” IEE Proc.-Comput. and Digital Tech., vol. 153, no. 3, pp. 181–188, 2006.

[83] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, “ADRES: An architec-
ture with tightly coupled VLIW processor and coarse-grained reconfigurable matrix,” in
Proc. 13rd Int. Conf. Field Program. Logic Appl. (FPL), 2003, pp. 61–70.

[84] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh et al., “MorphoSys: A re-
configurable architecture for multimedia applications,” in Proc. XI Brazilian Symp. Integr.
Circuit Design, 1998, pp. 134–139.

[85] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, “Adapting the DySER architecture
with DSP blocks as an Overlay for the Xilinx Zynq,” ACM SIGARCH Comput. Archit.
News, vol. 43, no. 4, pp. 28–33, 2016.

[86] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient supercomputing,”
IEEE Trans. on Comput., vol. 100, no. 10, pp. 892–901, 1985.

[87] C. Kumar HB, P. Ravi, G. Modi, and N. Kapre, “120-core microAptiv MIPS Overlay for
the Terasic DE5-NET FPGA board,” in Proc. 25th Int. Symp. Field Program. Gate Arrays
(FPGA), 2017, pp. 141–146.

[88] S. L. Harris, R. Owen, E. Sedano, and D. C. Martinez, “MIPSfpga: hands-on learning on a
commercial soft-core,” in Proc. 11th European Workshop on Microelectronics Education
(EWME), 2016, pp. 1–5.

[89] R. Hartenstein, “Coarse grain reconfigurable architectures,” in Proc. Asia and South Pa-
cific Design Automation Conference (ASP-DAC), 2001, pp. 564–569.

[90] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective,” in
Proc. Conf. Design, Autom. and Test in Europe (DATE), 2001, pp. 642–649.

REFERENCES 119

[91] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and L. Carro, “An FPGA-
based heterogeneous coarse-grained dynamically reconfigurable architecture,” in Proc.
Int. Conf. Compilers, Archit. and Synthesis for Embedded Syst. (CASES), 2011, pp. 195–
204.

[92] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, “A fully pipelined and dynamically
composable architecture of CGRA,” in Proc. 22nd Int. Symp. Field-Programmable Cus-
tom Comput. Mach. (FCCM), 2014, pp. 9–16.

[93] N. Kapre, H. Jianglei, A. Bean, P. Moorthy et al., “GraphMMU: Memory management
unit for sparse graph accelerators,” in Proc. Int. Parallel and Distrib. Process. Symp. Work-
shop (IPDPSW), 2015, pp. 113–120.

[94] G. Stitt and J. Coole, “Intermediate fabrics: Virtual architectures for near-instant FPGA
compilation,” IEEE Embedded Syst. Letters, vol. 3, no. 3, pp. 81–84, 2011.

[95] N. Kavvadias and K. Masselos, “Hardware design space exploration using HercuLeS
HLS,” in Proc. 17th Panhellenic Conf. on Informatics (PCI), 2013, pp. 195–202.

[96] X. Li, A. Jain, D. Maskell, and S. A. Fahmy, “An area-efficient FPGA overlay using DSP
block based time-multiplexed functional units,” in Proc. 2nd Int. Workshop on Overlay
Archit. for FPGAs (OLAF), 2016.

[97] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker, “Register allocation for software
pipelined loops,” ACM SIGPLAN Notices, vol. 27, no. 7, pp. 283–299, 1992.

[98] B. R. Rau, “Iterative modulo scheduling: An algorithm for software pipelining loops,” in
Proc. 27th Int. Symp. on Microarchitecture (MICRO), 1994, pp. 63–74.

[99] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient partial reconfiguration management on the
Xilinx Zynq,” IEEE Embedded Syst. Letters, vol. 6, no. 3, pp. 41–44, 2014.

[100] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and performance exploration of
accelerator coherency port using Xilinx ZYNQ,” in Proc. 10th Conf. FPGAworld, 2013,
p. 5.

[101] Xillybus Ltd., “IP core product brief.” [Online]. Available: https://www.xillybus.com

[102] K. Vipin and S. A. Fahmy, “DyRACT: A partial reconfiguration enabled accelerator and
test platform,” in Proc. 24th Int. Conf. Field Program. Logic Appl. (FPL), 2014, pp. 1–7.

[103] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong, “An efficient and flexible
host-FPGA PCIe communication library,” in Proc. 24th Int. Conf. Field Program. Logic
Appl. (FPL), 2014, pp. 1–6.

https://www.xillybus.com

120

[104] D. de la Chevallerie, J. Korinth, and A. Koch, “ffLink: A lightweight high-performance
open-source PCI Express Gen3 interface for reconfigurable accelerators,” ACM SIGARCH
Comput. Archit. News, vol. 43, no. 4, pp. 34–39, 2016.

[105] Northwest Logic Inc., “PCI Express solution overview.” [Online]. Available: https:
//nwlogic.com/products/pci-express-solution/

[106] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, “JetStream: An open-source high-
performance PCI express 3 streaming library for FPGA-to-Host and FPGA-to-FPGA
communication,” in Proc. 26th Int. Conf. Field Program. Logic Appl. (FPL), 2016, pp.
1–9.

[107] T. L. Adam, K. M. Chandy, and J. Dickson, “A comparison of list schedules for parallel
processing systems,” Communications of the ACM, vol. 17, no. 12, pp. 685–690, 1974.

[108] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations research, vol. 9,
no. 6, pp. 841–848, 1961.

[109] Xilinx Ltd., “PYNQ: Python productivity for Zynq.” [Online]. Available: http:
//www.pynq.io

[110] E. Koromilas, I. Stamelos, C. Kachris, and D. Soudris, “Spark acceleration on FPGAs: A
use case on machine learning in Pynq,” in Proc. 6th Int. Conf. Modern Circuits and Syst.
Technol. (MOCAST), 2017, pp. 1–4.

[111] Y. Hao and S. Quigley, “The implementation of a deep recurrent neural network language
model on a Xilinx FPGA,” arXiv preprint arXiv:1710.10296, 2017.

[112] B. Janßen, P. Zimprich, and M. Hübner, “A dynamic partial reconfigurable overlay concept
for PYNQ,” in Proc. 27th Int. Conf. Field Program. Logic Appl. (FPL), 2017, pp. 1–4.

https://nwlogic.com/products/pci-express-solution/
https://nwlogic.com/products/pci-express-solution/
http://www.pynq.io
http://www.pynq.io

	Acknowledegments
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	List of Publications
	Introduction
	Motivation
	Objectives
	Contributions
	Organization

	Background
	Introduction
	High-level Synthesis
	Overlay Architectures
	Processor Based TM Overlays
	Soft Processors
	Single-issue Processors
	Multi-issue Processors
	Multithreaded Processors

	Parallel Processors
	Multithreaded Parallel Processors
	VLIW Processors
	Vector Processors
	Soft GPUs

	CGRA-like TM Overlays
	Interconnect topology
	CGRA-like Processor Arrays
	CGRA-like Medium-grained Overlays
	TM Overlays with Homogeneous FUs
	TM Overlays with Heterogeneous FUs

	Summary

	Proposed Overlay
	Introduction
	Programmable Pipelines
	Architecture Description
	FU Microarchitecture
	Overlay Control and Functionality

	Compiling to the Overlay
	Experimental Evaluations
	Summary

	Architectural Enhancements
	Introduction
	Architectural Enhancements
	Rotating Register File
	Replicating the Stream Datapath
	FU Write-back
	Comparison of the New FU Architectures

	Compiling to the Overlay
	Experimental Evaluation
	Summary

	System Integration
	Introduction
	Available Solutions for Memory Interfaces
	AXI bus-based Solutions
	PCIe-based Solutions

	Overlay Integration
	Xillybus
	RIFFA

	Experimental Evaluations
	AXI-Xillybus System
	AXI-Xillybus Loopback test
	AXI-Xillybus based Linear TM Overlay Accelerator
	Results and Comparisons

	PCIe System
	PCIe-Xillybus Loopback test
	PCIe-Xillybus based Linear TM Overlay Accelerator
	RIFFA Loopback test
	RIFFA based Linear TM Overlay Accelerator
	Results and Comparisons

	Discussion
	Summary

	Conclusions and Future Work
	Summary of Contributions
	An Area-Efficient TM Overlay with Linear Interconnect
	Architectural Enhancements for the Proposed Overlay
	Overlay Accelerator Systems based on AXI or PCIe Interface

	Future Work
	Exploring More Applicable Interconnects
	Developing Better Instruction Schedules
	Improving the Memory Interfaces
	Python Productivity for the Overlays

	APPENDICES
	Example Benchmark DFGs binipolynomial, gopalakrishnan2007finding, hoy2015performance
	References

