
9

A Scalable Systolic Accelerator for Estimation of the Spectral

Correlation Density Function and Its FPGA Implementation

XIANGWEI LI and DOUGLAS L. MASKELL, Nanyang Technological University, Singapore

CAROL JINGYI LI, The University of Sydney, Faculty of Engineering, School of Electrical and Information

Engineering, Australia

PHILIP H. W. LEONG, The University of Sydney, The University of Sydney Nano Institute, Faculty of

Engineering, School of Electrical and Information Engineering, Australia

DAVID BOLAND, The University of Sydney, Faculty of Engineering, School of Electrical and Information

Engineering, Australia

The spectral correlation density (SCD) function is the time-averaged correlation of two spectral components

used for analyzing periodic signals with time-varying spectral content. Although the analysis is extremely

powerful, it has not been widely adopted in real-time applications due to its high computational complexity.

In this article, we present an efficient FPGA implementation of the FFT accumulation method (FAM) for

estimating the SCD function and its alpha profile. The implementation uses a linear systolic array with a bi-

directional datapath consisting of DSP-based processing elements (PEs) with a dedicated instruction schedule,

achieving a PE utilization of 88.2%.

The 128-PE implementation achieves a clock frequency in excess of 530 MHz and consumes 151K LUTs,

151K FFs, 264 BRAMs, 4 URAMs, and 1,054 DSPs, which is less than 36% of the logic fabric on a Zynq

UltraScale+ XCZU28DR-2FFVG1517E RFSoC device. It has a modest 12.5W power consumption and an energy

efficiency of 4,832 MOPS/W, which is 20.6× better than the published state-of-the-art GPU implementation. In

terms of throughput, it achieves 15,340 windows/s (15,340 windows/s × 2,048 samples/window = 31.4 MS/s),

which is a 4.65× improvement compared to the above-mentioned GPU implementation and 807× compared

to an existing hybrid FPGA-GPU implementation.

CCS Concepts: • Hardware→ Reconfigurable logic applications; Hardware accelerators; • Computer

systems organization→ System on a chip;

Additional Key Words and Phrases: FPGA, systolic array, spectral correlation density, FFT accumulation

method

This research was funded by the Ministry of Education (MOE), Singapore under grant MOE2017-T2-1-002.

Authors’ addresses: X. Li and D. L. Maskell, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798;

emails: xli045@e.ntu.edu.sg, asdouglas@ntu.edu.sg; C. J. Li and D. Boland, The University of Sydney, Faculty of En-

gineering, School of Electrical and Information Engineering, Sydney, New South Wales, Australia; emails: {jingyi.li,

david.boland}@sydney.edu.au; P. H. W. Leong, The University of Sydney, The University of Sydney Nano Institute,

Faculty of Engineering, School of Electrical and Information Engineering, Sydney, New South Wales, Australia; email:

philip.leong@sydney.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1936-7406/2022/12-ART9 $15.00

https://doi.org/10.1145/3546181

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

https://orcid.org/0000-0002-1963-6354
https://orcid.org/0000-0002-6588-4762
https://orcid.org/0000-0001-7638-6323
https://orcid.org/0000-0002-3923-3499
https://orcid.org/0000-0001-5370-4464
mailto:permissions@acm.org
https://doi.org/10.1145/3546181
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546181&domain=pdf&date_stamp=2022-12-22

9:2 X. Li et al.

ACM Reference format:

Xiangwei Li, Douglas L. Maskell, Carol Jingyi Li, Philip H. W. Leong, and David Boland. 2022. A Scalable Sys-

tolic Accelerator for Estimation of the Spectral Correlation Density Function and Its FPGA Implementation.

ACM Trans. Reconfig. Technol. Syst. 16, 1, Article 9 (December 2022), 24 pages.

https://doi.org/10.1145/3546181

1 INTRODUCTION

A signal exhibits cyclostationarity if and only if the signal is correlated with certain frequency-
shifted versions of itself [10]. It is used for the analysis of a wide range of periodic phenomena
in applications, such as signal detection and modulation classification; noise analysis of periodic
systems; synchronization problems; signal parameter and waveform estimation; channel identi-
fication and equalization; autoregressive (AR) and autoregressive moving average (ARMA)

modeling; and source separation [13].
A well-known technique to interpret the underlying periodicity of a cyclostationary signal is

the spectral correlation density (SCD), also referred to as the cyclic spectral density or spectral
correlation function, which describes the cross-spectral density of all pairs of frequency-shifted
versions of a time-series. The SCD function represents the time-averaged statistical correlation of
two spectral components at frequencies f and f − α , as the bandwidth approaches zero [13]. It
performs exceptionally well in cognitive radio systems such as modulation classification, under
low signal to noise ratio (SNR) conditions [24]. For instance, different modulation types such as
BPSK, QPSK, and MSK can be easily detected by their distinct SCD functions [10, 22].

We comment that there has been an increasing body of work studying the use of deep learning
methods for various signal processing applications, such as spectrum sensing or cognitive radio.
To date, these have mostly worked with raw IQ. An excellent survey of this work is provided by
Wong et al. [32]. Nevertheless, the performance of deep learning algorithms can often be improved
by providing relevant information. With this in mind, our work seeks to develop the ability to gen-
erate a key feature with a very low latency. A deep learning algorithm could then realistically use
our implementation to calculate this feature, without considerable processing delay, to potentially
improve its overall performance.

While the implementation of the SCD function can be done either via time or frequency smooth-
ing, we consider time smoothing, as it has been shown to be more computationally efficient in
general [25]. One of the most popular time smoothing methods to estimate the SCD is the FFT

accumulation method (FAM) [25, 26]. The FAM technique is suitable for hardware implemen-
tation due to its parallel FFT-based computations and regular data access patterns. However, the
algorithm’s diamond-shaped computation pattern and the large amount of output data present a
considerable hardware acceleration challenge. The first problem we address through the use of a
bi-directional systolic array, the second by following the technique of computing the alpha pro-
file [21]. This technique captures the most significant information from the full SCD function by
taking the peak values along the α axis of the bi-frequency (f -α domain) feature map, reducing
the two-dimensional SCD to a one-dimensional vector of alphas.

In this article, a scalable high-speed FPGA accelerator is proposed for estimating the SCD func-
tion and alpha profile using FAM. A linear systolic array is used with programmable processing

elements (PEs). The PEs operate on complex-valued data and are optimized for high clock fre-
quency. Inter-PE data dependencies are minimized by maximizing intra-PE data cohesion. The
proposed FPGA accelerator is evaluated by comparing it to existing hardware accelerator imple-
mentations in terms of throughput, area, and energy efficiency. The novel contributions of this
work are as follows:

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

https://doi.org/10.1145/3546181

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:3

• A novel, systolic array for efficient computation of the SCD function and alpha profile using
a bi-directional datapath. This allows a sustained PE utilization of 88.2% while that of a single
directional datapath is merely 50.4%.
• A highly pipelined, programmable RISC-like load–store architecture with a complex arith-

metic ALU based on Xilinx DSP48E2 slices, which enables the efficient implementation of
the FAM method.
• An optimized microarchitecture and FPGA implementation that maximizes clock frequency

through heavy pipelining. Our 128-PE configuration operates at a frequency of 530 MHz on
a Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC device. An open source FPGA imple-
mentation for the systolic array is available at GitHub.1

The remainder of this article is organized as follows: In Section 2, the FAM method for cyclosta-
tionary signal processing is presented. In Section 3, we analyze the FAM algorithm to exploit the
calculation of the computationally intensive kernel in parallel. In Section 4, a bi-directional linear
systolic array as an FPGA accelerator for FAM is proposed and its mapping scheme is thoroughly
explained. This section also details the implementation of our proposed FPGA accelerator, includ-
ing the PE microarchitecture and the array of PEs connected via linear interconnect. Section 5
evaluates the proposed FPGA accelerator by comparing it to a state-of-the-art hybrid FPGA-GPU
implementation and a state-of-the-art GPU implementation, in terms of throughput and resource
utilization. We draw conclusions and discuss our future work in Section 6.

2 BACKGROUND

2.1 Spectral Correlation Density Function

The time-smoothed cyclic cross periodogram [11] of two complex-valued sequences x (n) and y (n)
over a time interval of Δt seconds is defined by Equation (1).

Sα0
xyT

(n, f0)Δt =
1

T

〈
XT (n, f1)Y ∗T (n, f2)

〉
Δt

(1)

Here, 〈·〉 is the inner product operation, while XT (n, f1) and YT (n, f2) are complex demodulates

centered at frequency f1 = f0 +α0/2 and f2 = f0 −α0/2, with α0 the frequency delay between two
complex demodulates. The demodulates, defined by Equation (2), are computed over a windowing
function a(r) of length T = NpTs seconds from the original time interval Δt , where Ts is the
sampling period and Np is the number of samples.

XT (n, f) =

Np /2∑

r=−Np /2

a(r)x (n − r)e−i2π f (n−r)Ts (2)

To compute the digital implementation of SCD function of inputsx (n) andy (n), we first compute
demodulates forXT (n, f1) andYT (n, f2). We then correlate these demodulates using a complex mul-
tiplier followed by a low pass filter (LPF) with bandwidth approximately 1/Δt [25]. Altogether,
the SCD estimate at (f0,α0) given by Equation (3).

Sα0
xyT

(n, f0)Δt =
∑

r

XT (r , f1)Y ∗T (r , f2)д(n − r), (3)

where д(n) is a windowing function with length Δt = NTs . For the special case of auto-correlation
studied in this article, y (n) is a time-delayed version of x (n). For a reliable estimate, Δt >> T .

1https://github.com/louislxw/pe_array.

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

https://github.com/louislxw/pe_array.

9:4 X. Li et al.

2.2 Estimating Spectral Correlation Density

While direct application of Equation (3) is computationally inefficient, decimation and the fast

Fourier transform (FFT) can be used to reduce the complexity [8]. Decimation involves reduc-
ing the number of complex demodulates computed from N to P = N /L by using an L sample stride.
L is set as Np/4 to have a good tradeoff between maintaining computational efficiency and min-
imizing cycle leakage and aliasing [8], producing a new sequence of demodulates XT (pL, f) for
p = {0, 1, . . . , P − 1}. To use the FFT, the following substitutions are implemented to Equation (2):
d = Np/2 − 1, r = d − k, fm =m/(NpTs) and −Np/2 < m < Np/2 [12]. This results in Equation (4),
where the summation in brackets can be efficiently computed by the FFT.

XT (pL, fm) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Np−1∑

k=0

a(d − k)x (pL − d + k)e−i2πmk/Np

⎤
⎥
⎥
⎥
⎥
⎥
⎦

e−i2πmpL/Np (4)

The SCD function can then be estimated from the decimated complex demodulates XT (rL, fh)
and YT (rL, fl) at center frequency of fh and fl , as in Equation (5).

Ŝα0
x (f0) = Ŝα0

x (pL, fhl)Δt =
∑

r

XT (rL, fh)Y ∗T (rL, fl)дd (p − r), (5)

where дd (r) = д(rL). However, a frequency shift ϵ = qΔα , where Δα = 1/Δt for each point
estimate q ∈ {1, . . . , P }, can be introduced into the complex demodulate product in Equation (5).
This enables the SCD function to also be efficiently evaluated by a P-point FFT of the complex
demodulate product, as in Equation (6). In this equation, we also make the following substitutions:
ahl = fh − fl , f0 = fhl = (fh + fl)/2,α0 = ahl + qΔα and Δα = fs/P [12].

Ŝα0
x (f0) = Ŝahl+Δα

x (pL, fhl)Δt =
∑

r

XT (rL, fh)Y ∗T (rL, fl)дd (p − r)e−i2π rq/P (6)

2.3 Example of Spectral Correlation Density and Alpha Profile

Figure 1 is an example of a real signal x (n) in OOK modulation, its decimated complex demodulate

XT (rL, fm), the estimated SCD function Ŝα0
x (f0) , and the alpha profile. The alpha profile is the

vector of peak values along the α axis of the bi-frequency feature map. This is valuable because
the diamond-shaped SCD function is of size 2N × 2Np for a signal of length N , decimated into
P subsequences of length Np . The alpha profile captures key information with greatly reduced
storage requirements compared with the full SCD matrix.

The SCD function can be used to extract the spectrum features, with the alpha profile able to
retain critical information sufficient to classify different signals. To demonstrate this, we provide
a comparison of these features for two signals from the DeepSig [15] benchmark with different
modulations in Figure 2.

2.4 Comparing FFT-based Methods for Estimating SCD Function

Several methods exist to estimate the SCD function of cyclostationary signals. These include aver-

aged cyclic periodogram (ACP) [1], cyclic modulation spectrum (CMS) [2], FFT accumula-

tion method (FAM) [25], strip spectral correlation algorithm (SSCA) [27], and fast spectral

correlation (Fast-SC) [4].
The ACP [1] is an extended “Weighted-Overlapped-Segment-Averaging” [31] method for cyclo-

stationary signals that produces the SCD function with a high resolution. However, the accurate
estimation of SCD comes at the cost of substantial computational complexity when the signal
length grows. This is mainly due to the massive amount of direct complex multiplications intro-
duced by the traditional implementation of the discrete-time Fourier transform (DTFT).

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:5

Fig. 1. The SCD function and alpha profile of OOK signal from DeepSig [15] at SNR = −8 dB.

Fig. 2. A comparison of SCD estimation between OOK and QPSK signals from DeepSig [15] at SNR = 28 dB.

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:6 X. Li et al.

The CMS [2, 3] utilizes the short-time Fourier transform (STFT) and has low complexity. De-
spite its efficiency, it is a biased SCD estimator and its approximation error increases significantly
when the cyclic frequency exceeds the frequency resolution.

The FAM [25] and SSCA [27] techniques are the most popular time-smoothing methods to es-
timate the SCD function from the decimated complex demodulates. Both are recognized as being
computationally efficient algorithms in the specialized literature, with FAM generally requiring a
smaller FFT size in the most computationally intensive part.

In recent years, Fast-SC [4] was proposed as an improved version of CMS that estimates the SCD
at a higher cyclic frequency resolution, by trading off moderate computational cost. However, the
complexity of Fast-SC algorithm increases notably when there is a need to enlarge the maximum
range of cyclic frequencies for study [7].

While most of the surveyed approaches (except for ACP) are based on bi-frequency FFT op-
erations, FAM is one of the most favorable algorithms for hardware implementation due to its
parallel computations and regular data access patterns. A detailed, algorithmic description of the
FAM technique is presented in Section 3.1.

2.5 Existing Implementations of the FAM Method

Early research has focused on the serial CPU implementations of the FAM method [9, 26]. However,
they were generally written in sequential software languages such as C and MATLAB, and the
performance is far from that of real time requirements. To be suitable for real-world applications,
it is essential that the parallelism of the SCD estimators is exploited. Where the output of the alpha
profile could be used as a feature in a broader modulation classification system, the former must
operate at rates up to the throughput of the design.

In 2008, Ge et al. [14] designed a parallel FAM algorithm, running on a cell broadband engine of
a PlayStation 3. It is composed of a power processor element (PPE) acting as the controller and
eight synergistic processing elements (SPEs) for parallel computing, which runs 7.6× faster
than sequential FAM on a general purpose processor. Similarly, GAEA [29] was proposed as a
hybrid parallel architecture that supports very long instruction word (VLIW) and single in-

struction, multiple data (SIMD) instructions. It runs at 350 MHz and requires only 78.8 ms to
execute the FAM algorithm for a signal of 32K samples.

Recently, there is a growing interest in developing high-performance hardware implementations
of the FAM method. Lee et al. [18] developed a GPU implementation of the FAM method and
achieved a speedup of 39× over the serial implementation running on a 2.94 GHz Intel Core 2
CPU. The University of Arizona proposed high throughput GPU implementations [20, 21] and
a heterogeneous FPGA-GPU implementation [5] of FAM. While they reported a state-of-the-art
throughput of 3,300 windows/s on a Tesla K40 GPU, the hybrid FPGA-GPU implementation was
significantly less optimized, achieving only 19 windows/s. This was due to the use of a relatively
low-end Tegra K1 GPU and a Zynq-7000 FPGA, which consumed less than 3% of hardware resource
while running at just 140 MHz.

2.6 Systolic Array Processors

The high performance of our design mainly arises through parallel processing of the FAM algo-
rithm in a systolic array. Systolic processor arrays are regular architectures with local interconnec-
tion between processing elements (PEs). This design structure facilitates an architecture that
operates at a high clock frequency. The main challenge is to ensure the PEs are utilized efficiently.
There is seemingly continual research in VLSI and FPGA systolic array processors. For example,
this includes an early discussion provided by Kung [17] and more recent FPGA designs for deep
learning [30]. Common issues that must be addressed include I/O constraints, memory limitations,

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:7

pipelining, challenging compute patterns, and efficient PE design. Instead of exploring this entire
research area, we highlight examples from the field of solving systems of linear equations that
highlight each of these problems and different techniques employed to overcome them. We then
discuss how this inspired our own approach.

When designing a systolic array, it is important to ensure that computation overhead is greater
than or equal to I/O limitations. For example, in block-based LU factorization with blocks of size
M×M , the number of computations areO (M3), but the number of clock cycles to load a block from
memory to the accelerator is O (M2). This means the maximum number of parallel operations is
O (M). A simple solution, as presented by Zhang et al. [33], is to preload four blocks of a large matrix
into on-chip memory, three of which are reused for an entire row. After this, double-buffering can
be used to overlap loading the next block from memory while computing the current block. This
essentially is pipelining the load phase for the next block in an alternative memory so the systolic
array can be fully utilized.

Challenging compute patterns occur when an algorithm does not easily fit into a 1D or 2D array.
For example, QR-based solution of a system of linear equations typically results in a triangular
compute pattern. Folding the dataflow to reuse the PEs of a linear or 2D array is one of the main
techniques to address this. However, the chosen folding approach either increases the complexity
of the PE or the interconnect. For example, the approach by Rader [23] required a PE that supported
CORDIC operations. A more general approach outlining various options to fold an array for QR-
based solutions and their tradeoffs is presented by Lightbody et al. [19]. An alternative solution for
challenging compute patterns is to modify the underlying algorithm that utilizes the systolic array.
For example, Boland [6] presents a way to restructure LU decomposition with partial pivoting
such that it maintains numerical performance, fits onto a systolic array with minimal memory
overhead, and maintains trivial PEs to maximize clock frequency. However, this method sacrifices
some efficiency, reaching only 66%.

In this work, I/O is not an issue, because the algorithm, described in Section 3.1, converts a
streaming input into a matrix through the use of overlapping windows, essentially performing a
serial to parallel conversion. However, we do experience a challenging triangular compute pattern.
We considered a folding approach, but decided the additional hardware required was non-trivial.
Instead, we added a novel modification to the interconnect to support a bi-directional datapath
to pipeline successive problems in opposite directions. This achieves a utilization of 88.2% with
minimal overhead.

3 ALGORITHM

3.1 FFT Accumulation Method

In this article, we focus on the FFT accumulation method (FAM), as it is one of the most com-
putationally efficient methods. The algorithm can be generally decomposed into four steps, i.e.,
decimation and windowing, first-stage FFT, down conversion, SCD matrix, and alpha profile gen-
eration [5]. There are a few parameters in this algorithm that have been discussed in Section 2.
Our design is both scalable and general. It can be readily applied to any parameter setting, subject
to available FPGA resources, by changing the PE microcode.

3.1.1 Step 1: Decimation and Windowing. The first step is to decimate the input signal and
filter it using a window function, as given in Equation (4). The signal of length N is divided into
P channels with sub-sequences of Np elements and a nonoverlap offset of L = Np/4. After the
decimation, a Hamming window is applied to eliminate the artificial high-frequency components.
The output of this step is referred to as XW .

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:8 X. Li et al.

Fig. 3. FAM algorithm step 1–2: decimation, windowing, and Np -point FFT.

3.1.2 Step 2: First Stage FFT. The windowed frames generated from the first step are then ap-
plied to an Np -point fast Fourier transform (FFT), as described by the square brackets in Equa-
tion (4). Since the FFT size is the same as that of one frame in XW , the Np -point FFT output XF

maintains the size of Np × P . Figure 3 describes the process of step 1 and step 2 in sequential blocks.

3.1.3 Step 3: Down Conversion. Down conversion (frequency shifting) is then performed onXF

to obtain the complex demodulate sequencesXD , which is detailed in Equation (7). To control cycle
leakage and aliasing, L is set to Np/4,meaning the exponential function e−i2π kmL/Np can only take
the values from (i, −i, 1, −1).

XD [k,m] = XF [k,m] ∗ e−i2π kmL/Np = XF [k,m] ∗ [cos(2πkmL/Np) − i sin(2πkmL/Np)] (7)

3.1.4 Step 4: SCD Matrix and Alpha Profile Generation. The last step of FAM is to calculate the
SCD matrix, which corresponds to Equation (6), and the alpha profile. This is the most compu-
tationally expensive part, as the iterative P-point FFT constitutes ≈ 86% of the whole execution
time on a serial CPU implementation [21]. The pseudocode of the SCD matrix and alpha profile
computation is described in Algorithm 1.

ALGORITHM 1: Compute kernel of SCD matrix and alpha profile.

Input: Two matrices X = XD and Y = X ∗
D

with a size of Np × P .

Output: A vector alpha_pro f ile with a size of 2N × 1.

for i ← 0 to Np − 1 by 1 do

for j ← 0 to Np − 1 by 1 do

K[i ∗ Np + j, :] ← X [i, :] ∗ Y [j, :]

M[i ∗ Np + j, :] ← abs (P-point FFT (K[i ∗ Np + j, :]))

row ← ((j − i)/Np + 1) ∗ N
Pa ← M[i ∗ Np + j, P/4 : (P/2 − 1)]

Pb ← M[i ∗ Np + j, P/2 : (3P/4 − 1)]

SCD[(row − P/4) : (row + P/4 − 1), i + j] ← {Pa, Pb}
end

end

alpha_pro f ile ← max(SCD, [], 2)

where X ∗
D

represents for an element-wise complex conjugate of matrix XD .

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:9

Fig. 4. SCD matrix and alpha profile generation.

The structure of the SCD matrix and alpha profile is shown in Figure 4. As explained in Algo-
rithm 1, half of the iterative P-point FFT outputs (in the middle range) are used to build the SCD
matrix, formed by multiple Pa and Pb elements in a staircase fashion, as in Figure 4(a). Thus, a
huge number of FFT outputs are required to form the full SCD matrix with a size of 2N × 2Np ,
which imposes a significant memory and communications bottleneck on the implementation mak-
ing it impractical in a real-time scenario. To resolve this issue, a row-wise MAX operation, namely,
the alpha profile, is applied to the SCD matrix so only the peak values of each row are used as the
final outputs for classification.

According to Algorithm 1, the calculation of the Pa and Pb blocks in the down staircase direction
are independent, which means the SCD matrix can be efficiently generated by mapping different
blocks in the down staircase direction to different parallel processing elements (PEs). Besides,
the PEs should be interconnected with their neighbors to support the distributed computation of
the alpha profile in the horizontal view. All these inspirations bring us to an idea of developing a
linear systolic array of PEs to support the hybrid dataflow of the SCD matrix and alpha profile.

3.2 Exploiting Similarity in SCD

In Section 2, we have shown that the representation of SCD estimation Ŝα
x (f) is a 2-D feature map

in f and α axes. It is symmetrical in the bi-frequency dimension [10], as indicated in Equations (8)
and (9).

Ŝα
x (f) = Ŝα

x (−f) (8)

Ŝ−α
x (f) = Ŝα

x (f)∗ (9)

Thus, it is sufficient to compute just one quadrant of the SCD function Ŝα
x (f) (marked as the

shaded triangle in Figure 5). For the alpha profile, only half need be computed as the final output.

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:10 X. Li et al.

Fig. 5. An example of SCD generated from 256 PEs by processing 256× 256 32-element complex demodulates.

Thus, the complexity of the FAM method can be reduced by around 75% compared to that of the
full SCD computation. The number of individual PEs can also be reduced by 50%.

In the following sections, we focus on the calculation of one quadrant of the SCD function
and refer to it as QSCD. We also customize a few parameters of FAM algorithm to match with
the literature [5, 21] for the illustration of the microarchitecture in Section 4.2 and evaluation in
Section 5. Specifically, in this work, N = 2,048, Np = 256, L = Np/4 = 64, and P = N /L = 32.

4 ARCHITECTURE

Due to the straightforward nature of step 1 to step 3 of the FAM algorithm, we implemented these
steps in HLS. We then connected this to our optimized systolic array, implemented in RTL, which
is described in the following subsection.

4.1 QSCD Mapping Scheme

The methodology for mapping QSCD to the linear systolic array is illustrated in Figure 6. Algo-
rithm 1 is parallelized by mapping the independent complex multiplications (MULs) and FFTs
to the corresponding PEs (each PE is represented by a different color in Figure 6).

Initially, each PE has an input of (Xi ,Yi). After the PE computes the MUL and FFT operations
for one iteration, it then calculates and transfers the partial alpha results to its adjacent PE (as
indicated by the horizontal red dashed line) so the MAX operation can be split and allocated evenly

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:11

to each PE. This makes effective use of the systolic array. The PE then changes the input source
from (Xi ,Yi) to (Xi ,Yi+j) by shifting in the new Y component from the adjacent PE (as indicated
by the blue dashed line), upon which the PE proceeds to compute the next iteration and so on. The
purpose of the “SHIFT” function is to shift the Y components from the current PE (PE[i]) to the
previous PE[i − 1] in the shift register array. The “TX” function is responsible for the transmission
of partial alpha results from the current PE (PE[i] to the next PE[i + 1]). In the end, two vectors
of length N are calculated by the systolic array (as indicated by the green dashed line) and are
compared along the aligned region to generate the final alpha profile.

Algorithm 2 shows how Algorithm 1 has been modified to exploit the parallelism, showing how
the calculations can be performed using a systolic array implemented by a number of PEs and
how the dataflow in between adjacent PEs matches with the mapping scheme in Figure 6. Note
that the outer f or loop represents the PE index (the parallel architecture) and the inner f or loop
is the iterative sequential process of an individual PE. The parameterized number of clock cycles
required by each sub-process for a single PE is also indicated.

ALGORITHM 2: Pseudocode for the proposed systolic array.

Input: Two matrices X = XD and Y = X ∗
D

with a size of Np × P .

Output: A vector alpha_pro f ile with a size of N × 1.

for i ← 0 to Np/2 − 1 by 1 do

// Process of the ith PE (PE[i])

IDLE: wait f or input data // (2 ∗ P + 1) ∗ i cycles

LOAD: load X [i, :] and Y [i, :] // 2 ∗ P cycles

COMPUTE(i, i): compute f or X [i, :] and Y [i, :] // P + P log2 P cycles

for j ← (i + 1) to (Np − 2 − i) by 1 do

// j times iterative process on PE[i]

TX: transmit α[i, :] f rom PE[i] to PE[i + 1] // P/2 cycles

SHIFT: Y [i, :] ← Y [i + 1, :] // P cycles

COMPUTE(i, j): // P + P log2 P cycles

end

OUT: output α_1[i, :] // P/2 cycles

COMPUTE(i, Np − 1 − i)): // P + P log2 P cycles

OUT: output α_2[i, :] // P/2 cycles

end

return alpha_pro f ile ← max{α_1, α_2} // N cycles

Function COMPUTE(i , j):

K[i, :] ← X [i, :] ∗ Y [j, :] // P cycles

M[i, :] ← P-point FFT (K) // P (log2 P − 1/2) cycles

α[i, :] ← max{M (i, [P/4 : 3P/4 − 1]), M (i − 1, [P/4 : 3P/4 − 1])} // P/2 cycles

4.2 Processing Elements

Processing elements (PEs) perform the fundamental compute operations for the iterative tran-
sitions: TX, SHIFT, and COMPUTE in the inner loop of Algorithm 2. The datapath for a single PE
is a highly pipelined, load–store architecture, as shown in Figure 7. It comprises an instruction

memory (IMEM), a data memory (DMEM), a complex arithmetic ALU, and a controller. The
signals in bold font represent the inputs and outputs of the PE.

4.2.1 Instruction Memory. The IMEM is implemented using a LUTRAM-based ROM of size 32-
bit × 192 deep, which contains all the necessary instructions for one full computation, including
the complex multiplication, 32-point FFT, and the partial alpha profile. Each 32-bit instruction

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:12 X. Li et al.

Fig. 6. An example of QSCD generated from 128 PEs by processing a quadrant of 256 × 256 32-element

complex demodulates.

Table 1. Instruction Format

Opcode Reserved Address

arithmetic null source 31 source 22 source 13 destination4

31:29 28 27:24 23:16 15:8 7:0

1Read address of ROM32X1 for source 3 in range of [0:15].
2Read address of BRAM1 or BRAM2 for source 2 in range of [0:255].
3Read address of BRAM0 for source 1 in range of [0:255].
4Write address of BRAM0 and BRAM1 for destination in range of [64:255].

Table 2. Instruction Examples

Instruction Hex representation Assembly1 Operation2

Multiplication 32’h80_20_00_40 MUL $64, $32, $0 R64 = R32 ∗ R0
Butterfly (up) 32’hA0_50_40_60 MULADD $96, $64, $80, $0 R96 = R64 + R0 ∗ R80
Butterfly (down) 32’hC0_50_40_61 MULSUB $97, $64, $80, $0 R97 = R64 − R0 ∗ R80

1The format of assembly code is Arithmetic RD, RS1, RS2, (RS3). RS3 is only valid for three-operand instructions.
2All the operations are in complex values and the register/memory stores a 32-bit fixed-point complex number by

concatenating the 16-bit real part and the 16-bit imaginary part.

consists of a 3-bit opcode, a single unused (reserved) bit, and a 28-bit address (split into three
source address fields and one destination address), as shown in Table 1. Table 2 lists some rep-
resentative instructions such as the complex multiplication and the butterfly operators for the
radix-2 decimation-in-time (DIT) FFT. Note that the operands in Table 2 are all complex values
and each instruction takes one clock cycle for execution. Instructions are reused for each iteration,
controlled by the finite state machine (FSM).

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:13

Fig. 7. Microarchitecture of the proposed PE.

4.2.2 Complex Arithmetic ALU. The input signals from the DAC on our target board (ZCU111)
are normalized 14-bit fixed-point in-phase and quadrature-phase (I/Q) samples. These are aligned
on the 16-bit word boundary and grouped into a single 32-bit complex value. By pre-normalizing
them to between −1 and 1, it makes it easy to keep intermediate results within this range by right
shifting. For internal operations, we constrain the quantization error to 2−16 by using maximum
bitwidth during the arithmetic operations and truncating the results in the end.

We develop a customized PE based on a RISC-like load–store architecture, which includes
four complex arithmetic instructions (MUL, MAX , MULADD, MULSUB) required for the full
computation of the kernel, i.e., complex multiplication, the butterfly operators for the radix-2 DIT
FFT, and the calculation of the maximum of the intermediate alphas.

The complex arithmetic instructions can be decomposed into multiple real-valued multiplica-
tions with additional logic units. To achieve this, we integrate four DSP48E2 slices to build a
complex ALU and multiplex the sources of the ALU with specific output logic units based on
the runtime configuration. While a complex multiplication could be performed using just three

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:14 X. Li et al.

Fig. 8. The complex ALU configuration for a MULADD instruction.

real-valued multipliers, it requires a pre-adder on both inputs to the third multiplier, which is not
supported by the DSP48E2 slice.

Figure 8 gives an example of how our ALU from Figure 7 is configured to implement the
MULADD RD, RS1, RS2, RS3 instruction, which represents the upstream butterfly operator. For
the input source, RS1 and RS2 are two 32-bit complex-valued inputs, while RS3 is a 32-bit complex-
valued FFT twiddle factor. RD is a 32-bit complex-valued output, whose real part is generated by
the upper two DSP blocks, and the imaginary part is derived from the lower two DSP blocks.
After the multiplication and addition/subtraction operations, a right-shift operation is added to
avoid overflow when converting back to a 16-bit result. The 16-bit real and imaginary parts are
then concatenated to reconstruct a 32-bit complex number that will be written back to the data
memory.

4.2.3 Data Memory. The data memory (DMEM) consists of four RAMB18E2 primitives to
support a 2-write, 4-read RAM and 16 ROM32X1 primitives to support a 1-read ROM. The RAM is
used to store the 32-bit complex-valued input signals and the intermediate results either from the
complex ALU or an adjacent PE, while the ROM is used to store the 32-bit fixed-point FFT twiddle
factors.

The Xilinx block RAM (BRAM) can be used as a true dual port (TDP) RAM or a simple dual

port (SDP) RAM. The SDP mode is more flexible than the TDP mode when multi-port indepen-
dent write/read processes are required. As the PE needs to write back the output of the 3-operand
complex ALU (dout_alu) to the DMEM, the DMEM needs to support at least 1-write and 3-reads.
However, in our design, the partial alpha profile transmitted from the prior PE (din_tx) and the
Yi component shifted to the next PE (dout_shi f t) could be valid during the operation of the com-
plex ALU. This leads to the requirement for an additional independent write and read. To support
this, we configure all the RAMB18E2 primitives as SDP RAMs to support up to four concurrent
write/read processes. While this requires two 36 Kb BRAMs, the PEs are designed such that each
of the four DSP48E2 slices aligns horizontally with an 18K block RAM. This provides optimal con-
nectivity and speed between resources within a PE [16].

4.2.4 Controller. The controller (indicated by the shaded boxes in Figure 7) consists of two
parts: (a) a finite state machine (FSM) for generating essential signals to determine the state
of the PE for a specific iteration index and (b) a decoder that translates the 3-bit opcode into the
64-bit configurations for the four DSP blocks.

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:15

Fig. 9. The FSM of an arbitrary PE.

Figure 9 shows a Moore FSM with the required eight states for an arbitrary PE. Each PE starts
in the IDLE state. When the input signal is valid, the FSM moves to the START macro state that is
composed of LOAD and COMPUTE states. At the LOAD state, a 32-bit × 32 deep block of X and Y
values are loaded into the DMEM of the PE. The FSM then moves to the COMPUTE state and runs
the computation once. Next, there are two possible branches that can be taken, the first is to the
ITERATE macro state, which is an iterative state transition from the TX state to the COMPUTE state
and the other directly jumps to the END macro state. The path taken depends on whether the PE
has an iterative process or not (all PEs with the exception of PE[Np −1] have ITERATE cycles). The
OUT state will be triggered twice, once for the results generated by either the START or ITERATE

macro and then following the COMPUTE state of the END macro state. After the second output,
the system returns to the IDLE state for the next input sequence.

4.3 Single-direction Datapath vs. Bi-direction Datapath

An analysis of the systolic array operation using a cycle-aware system flowchart is shown in
Figure 10. The execution time can be estimated by determining the number of cycles in this
flowchart (or from Algorithm 2). A detailed description of each state and its required number of
clock cycles is explained in Table 3, which can be used as the basis for cycle estimation in the
system flowchart.

The first PE (PE[0]) performs Np different computational processes corresponding to each of
the Np element sub-sequences. These are: one START state (2P clock cycles for the LOAD process
and (P + P log2 P) clock cycles for the first COMPUTE kernel), (Np − 2) ITERATE states (one
ITERATE state comprises TX, SHIFT, and COMPUTE, requiring 5P/2 + P log2 P clock cycles), and

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:16 X. Li et al.

Fig. 10. A cycle-aware system flowchart.

Table 3. The Detailed Explanation of Each State in the FSM

State Description No. of cycles

IDLE Wait for the input of vector Xi and Yi (2P + 1) ∗ i
LOAD Load P-element Xi and P-element Yi in a stream 2P
COMPUTE P element-wise complex multiplication and P-element FFT P + P log2 P
TX Transfer P/2 partial alphas from PE[i] to PE[i+1] P/2
SHIFT Shift in vector Yi+1 from PE[i+1] to replace Yi P
OUT Output P/2 alpha results P/2

one END state (comprising OUT, COMPUTE, and OUT, requiring 2P + P log2 P clock cycles). For
each increase in the PE index, the number of computational processes is reduced by two, with
the last PE, PE[Np/2 − 1], only requiring two computational processes (START and END, or just
10P + 2P log2 P clock cycles).

It should be clear that PE[0] requires the most computation time in the system and has an
initiation interval (II) of (5P/2 + P log2 P)*Np clock cycles, whereas the final PE remains idle for
most of the time. As a result, while the proposed systolic architecture adopts a fully pipelined
implementation of the iterative process, the average PE utilization is just 50.4%. To make better
use of the PE resource, we investigate two methods to balance the computation of the different
PEs.

One simple solution is to fold QSCD along the anti-diagonal direction and map the additional
FFT blocks to the complementary PEs. In this way, each PE is responsible for (Np + 2)/2 compu-
tational processes. While this balances the number of iterative computations across different PEs,
the total number of IDLE cycles are unchanged and the utilization is unchanged. This is because

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:17

there is a dependency in the computation that cannot be removed. For instance, PE[Np/2− 1] has
to wait for PE[0] to complete (5P/2 + P log2 P) ∗ (Np/2 − 1) − (2P + 1) ∗ (Np/2 − 1) = (P/2 + P
log2 P−1) ∗ (Np/2−1) clock cycles before it can start the remaining (Np/2−1) processes, resulting
in the same PE utilization as in the original schedule in Figure 10.

Assuming there is continual input data, a superior approach is to reverse the datapath direction
when computing the SCD for independent sequences. As can be seen in Figure 10, PE[Np/2 − 1]
completes its operation, then stays idle waiting for PE[0] to finish. Instead, it can begin computing
the next SCD immediately. This not only balances the workload between PEs, but minimizes idle
time, resulting in a PE utilization of 88.2%.

We evaluate the performance of the two solutions by estimating the total clock cycles of pro-
cessing two successive signals in Figure 11. It takes (5P/2 + P log2 P) ∗ (2Np) clock cycles for the
unidirectional datapath to complete, however, due to overlapping of computation the bi-directional
datapath reduces this to only (5P/2 + P log2 P) ∗ (Np + 2) + (2P + 1) ∗ (Np/2 − 1) clock cy-
cles. Clearly (5P/2 + P log2 P) >> (2P + 1), meaning the bi-directional solution is much more
efficient.

4.4 Bi-directional Linear Systolic Array Architecture

To support the approach of Figure 11(b), we perform a minor modification of our systolic array to
support bi-directional dataflow, as shown in Figure 12.

The physical realization minimizes resource utilization between adjacent PEs by using two 2-to-
1 multiplexers to form the forward and reverse direct connections. The datapath direction for each
PE is then controlled by a reverse signal generated by the controller. In this bi-directional system
design, there is no data dependency between the different input signals, and the reverse datapath
is just a mirror of the forward one with the PE utilization being better balanced. Processing can
start immediately after the next sub-sequence has been loaded.

The input data stream, comprising the Xi and Yi data blocks, is FIFO buffered and connected to
the input of each PE by a series of 32-bit registers. The register chain needs to be replicated and
reversed to achieve the forward and reverse direction data load. To stream out the alpha pro f ile ,
we need to gather the partial alpha results from each PE and combine them. As there is no data
overlap, we can propagate the output in a sequential manner by connecting a 2-to-1 multiplexer
plus a 32-bit register to the output of each PE. The multiplexers are controlled by the output valid
signal (dout_pe_v) that is also propagated and synchronized with the alpha pro f ile via a series of
OR logic gates and 1-bit registers. In the end, the output stream and its valid signal are sent back
using a standard FIFO, similar to that of the input port. The implementation of the load and output
circuits are shown at the top and bottom of Figure 12.

5 RESULTS

Most state-of-the-art parallel SCD estimators have been implemented on GPUs [5, 21]. Instead, our
proposed architecture is a linear systolic array of processing elements (PEs), with multiple in-

struction multiple data (MIMD) parallelism. While the description that follows uses specific
embedded blocks for a Xilinx UltraScale+ FPGA, we believe that an equivalent design with simi-
lar performance could be made on the Intel FPGA architecture. We evaluate the performance of
our proposed linear systolic accelerator by comparing with the state-of-the-art hybrid FPGA-GPU
implementation [5] and state-of-the-art GPU implementation [21], which both perform the same
alpha profile calculation, in terms of resource utilization, throughput, and power consumption.

The proposed systolic array is implemented on a Zynq UltraScale+ XCZU28DR-2FFVG1517E
RFSoC device using Xilinx Vivado 2020.2. A single PE can achieve a clock frequency of 600 MHz,
with a resource usage of 721 LUTs, 615 FFs, 2 BRAMs, and 4 DSP blocks. To validate the efficiency

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:18 X. Li et al.

Fig. 11. Parameterized flowcharts indicating the required number of clock cycles using different datapaths.

Total cycles reduced to: (5P/2 + Ploд2P) (Np + 2) + (2P + 1) (Np/2 − 1).

of our proposed PE design, a direct HLS-based compute unit is implemented. The HLS-based unit
runs at a clock frequency of 500 MHz, with a much larger area overhead of 2,894 LUTs, 1,973 FFs,
6 BRAMs, and 12 DSP blocks. The linear systolic array is scalable from a single PE to 256 PEs.
We have chosen to focus on 128-PE array for direct comparison to the state-of-the-art GPU-based
implementations [5, 21].

In terms of resources, the number of logic slices and coarse-grained modules (i.e., BRAMs and
DSPs) grows linearly when the array size increases, as in Figure 13(a). For example, the 128-PE
bi-directional array consumes around 96K LUTs, 88K FFs, 258 BRAMs, and 512 DSP blocks, which
is less than 24% of the available resource.

In terms of clock frequency, while it achieves an fmax of 600 MHz for configurations from a
single PE to 16, the clock frequency gradually drops to 500 MHz as the array size is increased to
256 PEs, as shown in Figure 13(b). A sustained fmax of 530 MHz is achieved when configuring
the systolic array into 128 PEs for comparison with the existing works. Table 4 summarizes how

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:19

Fig. 12. A linear systolic array with bi-direction datapath support.

Fig. 13. Array scalability on Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC.

the size of the proposed systolic array and the PE memory architecture scale for the FAM method,
which is consistent with Algorithm 2.

A breakdown of the total clock cycles required by the processing of two successive signals
is shown in Table 5, which can be also derived from Algorithm 2 with the specific parameters
(N = 2048, Np = 256, L = Np/4 = 64, and P = N /L = 32). It is obvious that the PE utilization of the
proposed systolic array is 88.23%, as the IDLE state only accounts for 11.77% of the total execution
time. Since FPGAs are cycle-accurate, the number of cycles has been verified by simulation, the
operating frequency is calculated post place-and-route, the algorithm requires a straightforward
streaming input (it is not I/O constrained), and the FPGA resources are not completely exhausted,
the throughput estimates are likely to be highly accurate.

Table 6 shows a comparison of the FPGA resource usage and operating frequency between the
hybrid FPGA-GPU design [5] and our work. Table 6 also shows the total resource, in terms of LUTs,
FFs, BRAMs, and DSPs, available on the respective FPGA devices. From this table, it can be seen that
the hybrid FPGA-GPU design uses very little FPGA resource, as the FPGA is only responsible for

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:20 X. Li et al.

Table 4. Proposed Systolic Array Scales with Parameters of FAM Method

Signal length Array size PE IMEM depth QSCD size Stream I/Os

N = P × Np/4 Np/2 P + P log2 P 2N × 2Np 3N /2

Table 5. A Breakdown of Total Clock Cycles

Consumed by Different States

State No. of clock cycles Percentage

IDLE 8,255 11.77%
LOAD 128 0.18%
COMPUTE 49,536 70.62%
TX 4,064 5.79%
SHIFT 8,128 11.59%
OUT 32 0.05%

Total 70,143 100%

Table 6. Comparison of FPGA Resource Usage and Operating Frequency for the

Same Configuration of FAM

LUTs FFs BRAMs URAMs DSPs fmax

Hybrid FPGA-GPU design [5] 69 (0.1%) 153 (0.1%) 4 (2.9%) 0 (0%) 0 (0%) 140
Available on ZedBoard 53,200 106,400 140 0 220 –

Proposed full system 150,802 (35.5%) 150,824(17.7%) 264 (24.4%)1 4 (5%)1 1,054 (24.7%) 530

– 128-PE array 96,259 (22.6%) 88,239 (10.4%) 258 (23.9%) 0 (0%) 512 (12.0%) 530
– HLS implementation 54,543 (12.8%) 62,585 (7.3%) 4 (0.4%) 0 (0%) 542 (12.7%) 530
Available on ZCU111 425,280 850,560 1,080 80 4,272 –

1The additional 2 BRAMs and 4 URAMs are introduced by the buffering circuits between the HLS implementation and

128-PE array.

a small portion of the full algorithm, and it runs at a much lower clock frequency. In contrast, our
proposed systolic array achieves the highest clock frequency at 530 MHz, and the FPGA resource
usage is better proportioned to the available resource. This is due to the well-designed PEs with a
fully pipelined datapath and a lightweight linear interconnect with minimum area overhead.

Table 7 gives a comparison of our work with state-of-the-art GPU-based implementations. All
the listed works share the same configuration of FAM and use alpha profile of the SCD/QSCD
function as the output. To ensure a fair comparison, the preprocess (step 1 to step 3) of the FAM al-
gorithm is also implemented in Vitis HLS 2020.2 and connected to our proposed systolic array with
a double buffering scheme, as shown in Figure 14(a). Two UltraRAM (URAM) blocks are used to
buffer the adjacent windows from the Preprocess module, ensuring a fully pipelined process in the
systolic array. According to Figure 14(b), throughput of the proposed architecture is determined
by process 2, which is mapped on the systolic array. In this article, we use the term windows/s,
as it better describes that we are dealing with windowed signals of size 2,048 samples/window.
This is similar to the use of signals/s in References [5, 21]. The proposed systolic array achieves
a throughput of 15,340 windows/s, which is 4.65× better than the fastest GPU implementation
and 807× better than the hybrid FPGA-GPU implementation. While the proposed systolic accel-
erator may not be the lowest power implementation, its power consumption is significantly less
than the throughput-oriented GPU implementation. It also achieves the best energy efficiency at

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:21

Fig. 14. Block diagram and timing diagram of the proposed full system.

Table 7. Comparison of Throughput and Power Consumption for the Same Configuration of FAM

GPU [5] GPU [5] GPU [21] FPGA+GPU [5] Ours

Platform Tegra K1 Tesla K20 Tesla K40 ZedBoard+Tegra K1 ZCU111
Initiation Interval (ms) 111.61 8.98 0.303 50.95 0.065

Throughput (windows/s) 9 111 3,300 19 15,340

Speedup – 12.3 366.7 2.1 1,704.4

Computational Performance (GOPS) 0.14 1.75 13.0 0.30 60.4

Power (W) 3.5 51 55.51 5 12.52

Energy Efficiency (MOPS/W) 40 34 234 60 4,832

1The power consumption is estimated by scaling to the result of Reference [5].
2The power consumption is calculated from Vivado.

4,832 million operations per Watt (MOPS/W), which is 20.6× better than the highest through-
put GPU implementation. While the latest GPU work [21] adopts a Tesla K40 that was dated to
2013, one could perform a rough performance estimate based on the following: K40: 2,880 CUDA
cores, base clock 745 MHz; RTX 3080 Ti: 8,960 CUDA cores, base clock 1,365 MHz. It follows that
one could estimate a potential performance improvement by a factor of 5.5×, which would be in
line with the performance achieved on our FPGA, albeit at a maximum power draw of 350 W. This
implies our FPGA design is still likely to significantly outperform the GPU in performance per watt.

We evaluate the proposed systolic array across the DeepSig RADIOML 2018.01A dataset [15]
and demonstrate the alpha profile results of four different signals generated by an FPGA imple-
mentation of the systolic array and those generated by MATLAB in Figure 15. In each subfigure,
the plot on the left is double precision floating point output generated by MATLAB, and the plot
on the right is the 16-bit fixed-point output obtained from the systolic array. Intuitively, the dis-
tribution of the alpha profile coming from the fixed-point systolic accelerator is consistent with
that of the “golden” MATLAB floating point output for the same modulation type. To evaluate the
accuracy of alpha profile with different scales, we calculate the normalized root mean squared

error (NRMSE) of each signal in Equation (10) and get an average number of 0.0148.

NRMSE = RMSE/[max (alpha) −min(alpha)] (10)

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

9:22 X. Li et al.

Fig. 15. The alpha profile of four different signal types.

6 CONCLUSION

In this article, we presented an optimized implementation of the FAM method to compute the
SCD/QSCD function and its alpha profile. A scalable linear systolic array of programmable PEs is
proposed as an FPGA accelerator, which operates at a clock frequency of 530 MHz and, through
massive parallelism, achieves a sustained PE utilization of 88.2% with a bi-directional datapath.
The proposed systolic implementation achieves a significant 807× throughput improvement over
a hybrid FPGA-GPU implementation and a speedup of 4.65× over the state-of-the-art GPU im-
plementation. It also attains the best energy efficiency at 4,832 MOPS/W, which is 20.6× better
than the highest throughput GPU implementation. The alpha profile outputs are accurate and the
average NRMSE over all signals is 0.0148.

Though this work is customized for the alpha profile computation of QSCD algorithm, our pro-
posed systolic array can be adapted to different applications such as CNNs by changing the in-
struction set on the PEs. In future work, we plan to generalize the systolic array presented, as a
similar architecture can be used for other multiply-add intensive problems, including: deep neu-
ral network inference and training, compressed sensing and signal/image compression. We also
plan to study how to integrate this accelerator as a feature extractor within a deep learning ap-
proach for real-time cyclostationary analysis of radio-frequency signals to enhance modulation
classification [28].

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 9:23

REFERENCES

[1] Jérôme Antoni. 2007. Cyclic spectral analysis in practice. Mechan. Syst. Sig. Process. 21, 2 (2007), 597–630.

[2] Jérôme Antoni. 2009. Cyclostationarity by examples. Mechan. Syst. Sig. Process. 23, 4 (2009), 987–1036.

[3] Jerome Antoni and David Hanson. 2012. Detection of surface ships from interception of cyclostationary signature

with the cyclic modulation coherence. IEEE J. Ocean. Eng. 37, 3 (2012), 478–493.

[4] Jérôme Antoni, Ge Xin, and Nacer Hamzaoui. 2017. Fast computation of the spectral correlation. Mechan. Syst. Sig.

Process. 92 (2017), 248–277.

[5] Nilangshu Bidyanta, G. Vannhoy, M. Hirzallah, A. Akoglu, B. Ryu, and T. Bose. 2015. GPU and FPGA based architec-

ture design for real-time signal classification. In Proceedings of the Wireless Innovation Forum Conference on Wireless

Communications Technologies and Software Defined Radio (WInnComm’15). Springer, 70–79.

[6] David Boland. 2016. Reducing memory requirements for high-performance and numerically stable Gaussian elimina-

tion. In Proceedings of the ACM/SIGDA International Symposium on Field-programmable Gate Arrays. 244–253.

[7] P. Borghesani and J. Antoni. 2018. A faster algorithm for the calculation of the fast spectral correlation. Mechan. Syst.

Sig. Process. 111 (2018), 113–118.

[8] William A. Brown and Herschel H. Loomis. 1993. Digital implementations of spectral correlation analyzers. IEEE

Trans. Sig. Process. 41, 2 (1993), 703–720.

[9] Evandro L. Da Costa. 1996. Detection and Identification of Cyclostationary Signals. Technical Report. Naval Postgradu-

ate School, Monterey, CA.

[10] William A. Gardner. 1986. The spectral correlation theory of cyclostationary time-series. Sig. Process. 11, 1 (1986),

13–36.

[11] William A. Gardner. 1989. Statistical Spectral Analysis: A Nonprobabilistic Theory. Prentice-Hall, Englewood Cliffs, NJ.

[12] William A. Gardner. 1994. Cyclostationarity in Communications and Signal Processing. IEEE Press, New York.

[13] William A. Gardner, Antonio Napolitano, and Luigi Paura. 2006. Cyclostationarity: Half a century of research. Sig.

Process. 86, 4 (2006), 639–697.

[14] Feng Ge and Charles W. Bostian. 2008. A parallel computing based spectrum sensing approach for signal detection

under conditions of low SNR and Rayleigh multipath fading. In Proceedings of the 3rd IEEE Symposium on New Frontiers

in Dynamic Spectrum Access Networks. IEEE, 1–10.

[15] DeepSig Inc. 2018. RF Datasets for Machine Learning. Retrieved from https://www.deepsig.ai/datasets.

[16] Xilinx Inc. 2021. UltraScale Architecture DSP Slice User Guide. Retrieved from https://docs.xilinx.com/v/u/en-US/

ug579-ultrascale-dsp.

[17] Sun Yuan Kung. 1985. VLSI array processors. IEEE ASSP Magazine 2, 3 (1985), 4–22.

[18] Chu-Han Lee, Chia-Jen Chang, and Sao-Jie Chen. 2012. Parallelization of spectrum sensing algorithms using graphic

processing units. In Proceedings of the Cross Strait Quad-Regional Radio Wireless Conference (CSQRWC’12). IEEE, 35–39.

[19] Gaye Lightbody, Roger Woods, and Richard Walke. 2003. Design of a parameterizable silicon intellectual property

core for QR-based RLS filtering. IEEE Trans. Very Large Scale Integ. Syst. 11, 4 (2003), 659–678.

[20] Scott Marshall, Garrett Vanhoy, Ali Akoglu, Tamal Bose, and Bo Ryu. 2018. GPU based quarter spectral correlation den-

sity function. In Proceedings of the Conference on Design and Architectures for Signal and Image Processing (DASIP’18).

IEEE, 88–93.

[21] Scott Marshall, Garrett Vanhoy, Ali Akoglu, Tamal Bose, and Bo Ryu. 2020. GPGPU-based parallel implementation of

spectral correlation density function. J. Sig. Process. Syst. 92, 1 (2020), 71–93.

[22] Alexandru Martian, Bogdan Tudor Sandu, Octavian Fratu, Ion Marghescu, and Razvan Craciunescu. 2014. Spectrum

sensing based on spectral correlation for cognitive radio systems. In Proceedings of the 4th International Conference

on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE’14).

IEEE, 1–4.

[23] Charles M. Rader. 1996. VLSI systolic arrays for adaptive nulling [radar]. IEEE Sig. Process. Mag. 13, 4 (1996), 29–49.

[24] Barathram Ramkumar. 2009. Automatic modulation classification for cognitive radios using cyclic feature detection.

IEEE Circ. Syst. Mag. 9, 2 (2009), 27–45.

[25] Randy S. Roberts, William A. Brown, and Herschel H. Loomis. 1991. Computationally efficient algorithms for cyclic

spectral analysis. IEEE Sig. Process. Mag. 8, 2 (1991), 38–49.

[26] Steven R. Schnur. 2009. Identification and Classification of OFDM Based Signals Using Preamble Correlation and Cyclo-

stationary Feature Extraction. Technical Report. Naval Postgraduate School, Monterey, CA.

[27] Dorde C. Simic and J. R. Simic. 1999. The strip spectral correlation algorithm for spectral correlation estimation of

digitally modulated signals. In 4th International Conference on Telecommunications in Modern Satellite, Cable and Broad-

casting Services. TELSIKS’99 (Cat. No. 99EX365), Vol. 1. IEEE, 277–280.

[28] Stephen Tridgell, David Boland, Philip H. W. Leong, Ryan Kastner, Alireza Khodamoradi, and Siddhartha. 2020. Real-

time automatic modulation classification using RFSoC. In Proceedings of the International Parallel and Distributed

Processing Symposium Workshops (IPDPSW’20). IEEE, 82–89.

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

https://www.deepsig.ai/datasets
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp

9:24 X. Li et al.

[29] Shixian Wang, Botao Zhang, Hengzhu Liu, and Lunguo Xie. 2010. Parallelized cyclostationary feature detection on

a software defined radio processor. In Proceedings of the International Symposium on Signals, Systems and Electronics.

IEEE, 1–4.

[30] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.

Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the

54th Annual Design Automation Conference. 1–6.

[31] Peter Welch. 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time

averaging over short, modified periodograms. IEEE Trans. Aud. Electroacoust. 15, 2 (1967), 70–73.

[32] Lauren J. Wong, William H. Clark IV, Bryse Flowers, R. Michael Buehrer, Alan J. Michaels, and William C. Headley.

2020. The RFML ecosystem: A look at the unique challenges of applying deep learning to radio frequency applications.

arXiv preprint arXiv:2010.00432 (2020).

[33] Wei Zhang, Vaughn Betz, and Jonathan Rose. 2012. Portable and scalable FPGA-based acceleration of a direct linear

system solver. ACM Trans. Reconfig. Technol. Syst. 5, 1 (2012), 1–26.

Received 25 August 2021; revised 8 April 2022; accepted 21 June 2022

ACM Trans. Reconfigurable Technol. Syst., Vol. 16, No. 1, Article 9. Publication date: December 2022.

