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Time-Multiplexed FPGA Overlay Architectures: A Survey 1
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2
This article presents a comprehensive survey of time-multiplexed (TM) FPGA overlays from the research 3
literature. These overlays are categorized based on their implementation into two groups: processor-based 4
overlays, as their implementation follows that of conventional silicon-based microprocessors, and; CGRA- 5
like overlays, with either an array of interconnected processor-based functional units or medium-grained 6
arithmetic functional units. Time-multiplexing the overlay allows it to change its behavior with a cycle-by- 7
cycle execution of the application kernel, thus allowing better sharing of the limited FPGA hardware resource. 8
However, most TM overlays suffer from large resource overheads, due to either the underlying processor-like 9
architecture (for processor-based overlays) or due to the routing array and instruction storage requirements 10
(for CGRA-like overlays). Reducing the area overhead for CGRA-like overlays, specifically that required for 11
the routing network, and better utilizing the hard macros in the target FPGA are active areas of research. 12
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20

1 INTRODUCTION 21

Modern FPGAs have seen a rapid growth in logic density along with the integration of CPU, GPU, 22
and other hard silicon modules. To achieve the best accelerator performance, these FPGAs are 23
often custom designed, using conventional RTL hardware design techniques, and as such, have 24
only found mainstream applicability in specific applications such as digital signal processing and 25
communications. This is because design productivity issues, particularly the difficulty of hardware 26
design and the long compilation times, are major stumbling blocks to the widespread adoption of 27
FPGA-based accelerators in general purpose computing [11, 33]. 28

Traditionally, text-based hardware description languages (HDL) are used to define the behavior 29
of the FPGA. However, getting the best performance from the HDL implementation still needs a 30
good understanding of the target technology’s capabilities and of basic hardware concepts such as 31
pipelining and synchronization. Additionally, because of the fine granularity of the FPGA resource, 32
design compilation time is significant. It takes hours or even days to compile a very large design 33
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due to the fine-grained placement and routing used in the FPGA implementation. Even for the case34
where just a few lines of HDL code change, the traditional FPGA CAD tools have to go through the35
whole process (including synthesis, mapping, placement, and routing) to generate a new bitstream36
to program the device. This design process greatly slows down the development progress of FPGA37
designs and, to some extent, hinders the widespread adoption of FPGAs.38

High-level synthesis (HLS) has been widely adopted by EDA vendors to address some of the39
design productivity issues and provides a higher level of abstraction for the hardware, hiding40
much of the low-level detail. Typical HLS tools such as Xilinx Vivado HLS [21], Altera SDK for41
OpenCL [17], and LegUp [9] from the University of Toronto have been developed to interpret a42
high-level language description of a user application and convert it into low-level RTL. Using HLS43
tools, there is less of a requirement for hardware specialization as custom digital logic circuits can44
be generated automatically with high performance. However, while HLS techniques alleviate the45
design productivity problem to some extent, the back-end flow still requires very long compilation46
times, particularly for large designs, contributing to long design cycles and the lack of mainstream47
adoption of FPGAs by software designers who are used to rapid design iterations.48

Because of these long design cycles, researchers have investigated other techniques for improv-49
ing design productivity. One of these techniques is to use a virtual hardware representation which50
overlays the original FPGA fabric, referred to as an overlay architecture (or overlay).51

This article is organised as follows: Section 2 gives a broad overview of FPGA overlays along52
with their advantages and disadvantages and classifies them, based on the run-time configurability,53
as either spatially configured or time multiplexed (TM). Section 3 looks at the most successful54
group of TM FPGA overlays, that is, processor-based overlays. Processor-based overlays range55
in complexity from simple single core (soft) processors to fully functional SIMD, VLIW or vector56
processors. Section 4 examines CGRA-like TM overlays which consist of an array of interconnected57
processing units. These processing units can range from complete processors down to medium-58
grained arithmetic units. Section 5 summarizes the various time multiplexed overlays and presents59
the conclusions.60

2 OVERLAY ARCHITECTURES61

An overlay is a virtual configurable architecture, implemented over the physical fine-grained FPGA62
fabric, thus enabling programmability at a higher level of abstraction [45]. Overlay architectures63
promise to tackle the “programmability wall” of FPGAs by avoiding the tedious fine-grained place-64
ment and routing process. Programming an overlay is similar to configuring an FPGA, except that65
configuration is also performed at a higher level, typically at the word and functional block level,66
rather than at the bit level. As such, the mapping tools for overlays can quickly generate an ap-67
plication bitstream in just a few seconds and configure the overlay in just a few microseconds,68
significantly faster than for FPGA. Figure 1 shows a typical automatic mapping tool flow targeting69
an overlay. The overlay is first designed using the FPGA vendors design tools, and a bitstream for70
configuring the FPGA is generated, as shown in the RHS dashed box of Figure 1. The remainder71
of the tool chain generates an overlay configuration based on a user application. As the overlay is72
located at a layer between the user application and the underlying physical FPGAs, it is not neces-73
sary to regenerate the FPGA bitstream for different target applications. If an application changes,74
all that a designer needs to do is to regenerate the new configuration for the overlay using the75
mapping tool flow (shown on the LHS of Figure 1) and reprogram the overlay. This flow (which76
is more like a software programming flow) achieves thousands of times reduction in the design77
cycle time compared to a traditional FPGA CAD flow [16].78

While overlays allow high-level programmability with a significantly reduced compilation time,79
these advantages are not available for free. They generally come at the cost of a lower performance80
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Fig. 1. A typical overlay tool flow.

with significantly more FPGA resource used than for an equivalent design mapped directly to 81
FPGA. Even flexibility can be sacrificed as many overlays are specific to a set of applications [44, 82
68]. As such, a significant research effort has been applied to reducing the overlay area overhead 83
and improving the throughput. 84

Overlays can be broadly classified based on the run-time configurability of their FUs. If an FU 85
has a single fixed functionality at run-time, the overlay is referred to as spatially configured (SC), 86
while if the FU changes its operation on a cycle-by-cycle basis, the overlay is referred to as time- 87
multiplexed (TM). Table 1 lists some overlays categorized in terms of FU and interconnect config- 88
uration. 89

From Table 1, it can be seen that overlays with SC FUs and SC interconnect networks [6, 10, 90
11, 15, 25, 30, 33, 36, 75] comprise a significant group. In an SC overlay, a single operation node is 91
mapped to an individual FU and data is shifted between FUs over a programmable, but temporally 92
dedicated, point-to-point link. That is, the FU and interconnect configuration are fixed while the 93
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Table 1. Selected Overlay Architectures

Year
Overlay

Name

FU Interconnect
SC TM SC TM NoC

2005 SPREE [80] �
2006 QUKU [75] � �
2010 IF [15] � �
2011 VDR [10] � �
2011 Heracles [43] � �
2012 ZUMA [7] � �
2012 Octavo [53] �
2012 reMORPH [65] � �
2013 VCGRA [30] � �
2013 CARBON [8] � �
2013 MXP [74] �
2013 SCGRA [60] � �
2013 TILT [64] � �
2015 DSP-based [33] � �
2016 Linear TM [57] � �
2016 DeCO [35] � �
2016 GRVI Phalanx [26] � �

kernel executes. The benefit of an SC overlay is that kernel execution achieves an initiation interval94
(II) [54] of one, with throughput just determined by the operating frequency of the overlay.95

However, the area overheads of SC overlays, in particular their large interconnect resource re-96
quirements, have limited the practical use of these overlays in FPGA-based systems to very small97
compute kernels [6]. This means that as a large application executes a number of different kernels98
would need to be mapped to the overlay to achieve the best application acceleration. Thus, the99
overlay context switch time (the time required to switch between executing kernels) is also an im-100
portant consideration in the efficient operation of an overlay [16, 37]. Some of the current overlays101
utilize partial reconfiguration to reduce the overlay area, in particular the interconnect resources,102
by trading off runtime connection flexibility [65]. However, while faster than a complete FPGA re-103
configuration, partial reconfiguration still results in a significant context switch overhead, which104
will impact an application’s runtime if multiple kernels are used.105

As there is always a tradeoff between area and speed in hardware design, a number of research106
groups have shifted their attention to overlays which share the functional units among kernel107
operations in an attempt to reduce overlay resource requirements. Sharing or time-multiplexing108
the FU can significantly reduce the FU and interconnect resource requirements but at the cost109
of a higher II and hence a reduced throughput. TM overlays can be generally divided into two110
categories: processor-based overlays, and coarse-grained reconfigurable architecture (CGRA) like111
overlays. Although the development of TM overlays is still at the primary stage, some of the ex-112
isting works have shown great potential in tuning the compute density (throughput per area) and113
achieving rapid hardware context switching compared to the SC alternatives. In the next section,114
we review the current state-of-the-art relating to TM overlays.115

3 PROCESSOR BASED OVERLAYS116

Most successful TM FPGA overlays are based on processor implementations. These implementa-117
tions range from single-issue processors, through multithreaded processors, to parallel processors118
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Table 2. Soft Processors (32-bit)

Year Name Device Fmax Area
2005 CUSTARD [18] Virtex-2 30MHz 2400 Slices
2005 UT Nios [66] Stratix 77MHz 3000 LEs
2005 SPREE [80] Stratix II 82MHz 1200 LEs
2007 Leon3 [24] Virtex-2 125MHz 3500 LUTs
2010 MB-LITE [47] Virtex-5 65MHz 1450 LUTs
2010 Leon4 [1] RT4G150 150MHz 4000 LUTs
2012 iDEA [13] Virtex-6 453MHz 335 LUTs
2012 Octavo [53] Stratix IV 550MHz 900 ALUTs
2016 GRVI [26] UltraScale 375MHz 320 LUTs

and processor arrays. Overlays based on a processor implementation have the advantage of a well- 119
known, well-designed instruction set architecture (ISA) which makes them easy to use, however, 120
they tend to utilize a large amount of FPGA resource with a significant power consumption. 121

3.1 Soft Processors 122

A soft processor generally refers to a processor architecture which can be implemented on FPGA, 123
which then allows the ISA to be customized to suit a specific application. FPGA vendors provide 124
commercial soft processors such as Xilinx MicroBlaze [79] and Altera Nios II [3], implementing 125
a conventional MIPS-like architecture for software portability. These industrial soft processors 126
allow non-hardware experts to better target FPGAs with dedicated tools such as Xilinx EDK and 127
Altera Eclipse. However, these implementations are not portable between different FPGA vendor 128
devices and their RTL source code is not freely available. To overcome this, open source clones of 129
these commercial soft processors have been developed, such as the performance centric UT Nios 130
from the University of Toronto [66] and the area-efficient MB-LITE [47]. While these implementa- 131
tions are open source and can be customized to a specific application, their ISAs are not. To address 132
this issue, a number of open source soft processors with free ISAs, such as OpenSPARC [78], 133
OpenRISC [55], Plasma [69], RISC-V [77], Leon3 [24], and Leon4 [1], were developed by industrial 134
or independent groups. A recent survey of open source soft processors [38] showed that apart from 135
Leon3, most had a larger area overhead and provided less performance compared to MicroBlaze 136
and Nios II. Table 2 lists the latest versions of some typical soft processors in the last decade. 137

3.1.1 Single-Issue Processors. Many of the earlier soft-core processors were single-issue pro- 138
cessors because of their simplicity and area efficiency. These processors were to some extent con- 139
strained by the limited resources available in earlier generations of FPGA devices. MicroBlaze [79], 140
Nios II [3], OpenRISC [55], and Plasma [69] are all examples of single-issue processors. Single-issue 141
processors also tend to have fewer pipeline stages than multi-issue (superscalar) processors [50]. 142
Some other single-issue processors include: 143

SPREE. The Soft Processor Rapid Exploration Environment (SPREE) was developed to automati- 144
cally generate synthesizable HDL implementations of soft processor architectures from textual de- 145
scriptions of the ISA and datapath [80], facilitating the microarchitectural exploration of soft pro- 146
cessors. The SPREE processor with a 3-stage pipeline demonstrates 9% less area and 11% speedup 147
in wall-clock-time compared to the Nios II family of commercial soft processors. By customizing 148
the microarchitecture to specific software applications, the tuned version of SPREE provides an 149
average improvement of 11.4% over the fastest-on-average general purpose processor in terms of 150
compute efficiency [81]. The complexity of SPREE can be reduced by using functional component 151
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abstractions, however, some practical issues such as combinational loops, false paths, and multi-152
cycle paths, which affect the functionality and performance of the soft processor, may arise due to153
the careless use of these components.154

iDEA. iDEA [12, 13] is a lightweight soft processor based on the Xilinx DSP48E1 primitive and155
was developed to address the resource consumption issue while better targeting the underlying156
FPGA architecture. The 9-stage pipelined design with no data forwarding outperforms MicroBlaze157
in both resource consumption (a 59% reduction in LUTs with an 18% increase in FFs) and speed158
(a 92% increase in fmax). To reduce the execution time caused by NOP insertion due to data haz-159
ards, data-forwarding approaches applicable to the DSP48E1 primitive, such as internal loopback160
and external forwarding, were explored, resulting in an improvement of up to 25% for a set of161
benchmarks [32].162

While iDEA was designed as a soft processor to handle integer operations, it cannot fully sup-163
port 32-bit multiplication because of the limited width of the multiplier inputs in the DSP48E1164
(25×18 bits). Only a single DSP block is used to implement the soft processor, however, as there165
are hundreds of DSP blocks available in the modern FPGAs, making better use of these resources166
within a multi-processor system would significantly improve the performance for large compute167
kernels.168

3.1.2 Multi-Issue Processors. While most of the early generation of soft processors were single-169
issue cores, multi-issue or superscalar single processor implementations have also been developed.170
One of the best examples is the LEON3 processor [1] based on the 32-bit SPARC V8 processor ar-171
chitecture which was developed for space applications and is available as a soft core for FPGAs.172
Another example is the Intel Nehalem soft processor core [70] which was developed for emula-173
tion purposes and uses five FPGAs while running at a frequency of just 520 kHz. Unfortunately,174
a superscalar architecture requires significant hardware complexity to dynamically extract the175
instruction parallelism which when implemented in FPGA results in very high hardware costs.176

3.1.3 Multithreaded Processors. While single-issue processors are expected to run at a higher177
frequency with a pipelined architecture, their area-efficiency and instruction-per-cycle (IPC) count178
can be improved significantly with minimal extra complexity to support multithreading [49].179
UTMT II [23] and MT-MB [63] are two typical soft processors which support multithreading on180
the Altera Nios II/e and Xilinx MicroBlaze core, respectively. UTMT II achieved a 25% LE area181
reduction compared with Nios II/e, while MT-MB achieved a peak performance of 5× over that of182
MicroBlaze. Apart from the extension of commercial cores, there are a number of independent re-183
search efforts towards providing multithreading support on soft processors, such as CUSTARD [18]184
and Octavo [53].185

CUSTARD. The Customizable Multithreaded Processor (CUSTARD) was one of the first cus-186
tomizable multithreaded soft processors, supporting a parameterizable number of threads, thread-187
ing type, datapath bitwidths and custom instructions [18, 19]. CUSTARD is a RISC processor which188
has a fully bypassed architecture with a 4-stage pipeline. When implemented on a XC2V2000 FPGA189
and compared with MicroBlaze using five typical benchmarks, the CUSTARD processor achieved190
an average speedup of 2.41× across all benchmarks with custom instructions. However, CUSTARD,191
and its extended version, only achieved a clock frequency of 30MHz to 50MHz, which is far less192
than the 100MHz achieved by the MicroBlaze soft processor. Additionally, the custom instruction193
speedup came at a penalty of two times the area consumption and less I/O support compared to194
MicroBlaze.195

Octavo. The Octavo soft processor [53] is a multithreaded 10-stage pipelined architecture196
designed to operate at the theoretical maximum BRAM frequency (550MHz) on a Stratix197
IV device. A method of self-loop characterization was adopted to collapse the conventional198
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register/cache/memory hierarchy into one unified entity, which is beneficial to absorb the propa- 199
gation delays and simplify the ISA. To support fast multiplication, a fast multiplier which consists 200
of two half-pumped DSP blocks was designed to overcome the hardware timing restriction of 201
480MHz. 202

In summary, although single-core soft processors allow the benefits of software programma- 203
bility and hardware re-usage, their performance is still significantly less than that of either hard 204
processors or dedicated hardware accelerators, and cannot meet the requirements of very-high- 205
speed applications. In order to improve the throughput, there is an increasing amount of research 206
work exploring multi-core systems of soft processors with efficient routing technologies. 207

3.2 Parallel Processors 208

The sequential processing of single-issue soft processors has limited their use to specific lower 209
performance applications. When large-scale applications are considered, parallel computing, using 210
single instruction, multiple data (SIMD) execution or other parallel processing techniques, may be 211
required. 212

3.2.1 Multithreaded Parallel Processors. The Octavo soft processor [53] was further extended 213
to support SIMD by duplicating the datapath with a shared instruction stream [52]. SIMD-Octavo 214
was compared with VectorBlox MXP [74] (discussed in Section 3.2.3) and operates at about double 215
the clock frequency of MXP and generally achieves better performance (for an equal number of 216
lanes) in terms of execution time, area, and area-delay product. The execution time of multi-lane 217
SIMD-Octavo is better than hand-crafted Verilog HDL, but requires one to two orders of magnitudeQ1

218
more hardware resource. 219

3.2.2 VLIW Processors. Very long instruction word (VLIW) processors have been proposed to 220
exploit instruction level parallelism (ILP) by executing different operations on multiple FUs simul- 221
taneously [40]. 222

TILT. The 32-bit floating point TILT overlay [67, 68], was proposed as an FPGA-based VLIW 223
processor comprised of multiple floating point FUs with configurable pipeline depths. To enhance 224
the throughput, multiple TILT cores can be instantiated, working in parallel with a single shared 225
instruction memory. This architecture is referred to as TILT-SIMD. TILT has a separate 256-bit 226
memory fetcher unit which allows for data transfer between up to 8 TILT cores and the off-chip 227
DDR memory. The TILT overlay was evaluated for a set of five application benchmarks against 228
Altera OpenCL HLS implementations. The TILT overlay was able to achieve an operating 229
frequency over 200MHz, which is close to that of the HLS implementations, with an area overhead 230
of less than 2× for the same throughput. 231

Currently, the TILT-System is not customized to a general class of kernel applications, and as 232
such, a kernel update for a different application requires instruction rescheduling, with an associ- 233
ated FPGA reconfiguration, resulting in a context switch time of 38 seconds on average. Another 234
drawback of the TILT overlay is that, even though TILT is more flexible than OpenCL HLS for 235
implementing very small designs, it has less compute density compared to the OpenCL imple- 236
mentation. This problem can be solved by customizing the number of FUs and their functionality 237
for specific applications. 238

3.2.3 Vector Processors. While it remains a problem for soft processors to scale their perfor- 239
mance, soft vector processors (SVPs) are able to exploit data-level parallelism. They are able to 240
explore the tradeoff between performance and area, with a hybrid approach which shares the ben- 241
efits of traditional vector processing and modern SIMD mode. Most of the proposed SVPs have a 242
similar architecture, with a scalar soft processor acing as the controller for multiple vector lanes 243
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executing custom instructions on a local memory [51]. SVPs can achieve a significant speedup over244
soft processors by effectively unrolling loops into vector operations. However, there are a number245
of obstacles limiting the widespread adoption of SVPs. These include, difficulty in programming246
vector architectures [39], lack of a high-performance interface to external logic and limited support247
for data-dependent behaviors [71].248

A number of SVP designs, including VESPA [82], VIPERS [85], VEGAS [14], VENICE [73], and249
MXP [74], have been proposed. VESPA and VIPERS were developed in parallel as the first gener-250
ation of FPGA-centric SVPs, with VEGAS, which better utilizes the on-chip FPGA memory, being251
the second generation. VENICE is the latest version, targeting high frequency and low area, and252
led to the first commercial SVP, referred to as VectorBlox MXP.253

VESPA. VESPA was proposed as a MIPS-based processor with a VIRAM [46]-compatible vec-254
tor coprocessor, which results in a system combining the advantages of portability, scalability,255
and flexibility [82]. VESPA is portable across FPGA platforms, though the original design targeted256
Stratix III. The VESPA prototype achieved an average speedup from 1.8× (2-lane) to 6.3× (16-lane)257
over the scalar processor on EEMBC benchmarks. The flexibility of VESPA makes it possible to258
trade off area savings (up to 70%) by adjusting the vector lane length and width. To better target259
the FPGA, an improved VESPA with support for vector chaining and heterogeneous lanes [83] was260
implemented on a Stratix III FPGA. The modified VESPA achieved up to 34% better compute effi-261
ciency relative to VESPA in terms of performance-per-area for the full set of EEMBC benchmarks.262

VIPERS. Similar to VESPA, VIPERS consists of a single-threaded (Nios II-compatible) scalar core263
referred to as UTIIe, a memory interface unit, and a vector processing unit [85]. Three typical264
data-intensive applications were used as benchmarks for VIPERS and the Altera Nios II/s proces-265
sor using “push-button” C2H accelerators. Compared to Nios II, VIPERS demonstrated a scalable266
speedup ranging from 3× to 29×, at the cost of a reasonable (6× to 30×) area penalty. An improved267
version of VIPERS [84] offers double the vector registers and several new instructions (compared268
to VESPA), and is less strict about VIRAM compliance. Based on the same benchmarks as in [85],269
VIPERS with 16 lanes can achieve up to 25× better performance with a modest 14× area increase270
compared to the Nios II processor. It is possible to achieve a further 30% area savings by customiz-271
ing VIPERS to the benchmarks, equal to 6× the logic area of the Nios II/s processor implementation.272

Although both VESPA and VIPERS provide a wide range of granularity from 8-bit to 32-bit, the273
vector engine must be built to fit the largest width if mixed-width data processing is required.274
As a result, byte-sized data needs to be zero-extended or sign-extended to the full width, which275
unnecessarily adds overhead to the instruction memory and register files. Additionally, as the276
vector register file is connected to an on-chip memory (VIPERS) or on-chip data cache (VESPA), the277
memory/cache width must be large enough to support the traditional vector load/store operations.278
However, the amount of on-chip memory is limited by the capacity of a particular FPGA.279

VEGAS. Though VESPA and VIPERS demonstrated the scalability and feasibility of SVPs, they280
were not specifically targeted to the underlying FPGA architecture. As such, a new SVP architec-281
ture, VEGAS, was presented as a vector core with a Nios II/f processor [14]. The most significant282
differences between VEGAS and the previous SVPs, is the use of a cacheless scratchpad memory283
and a fracturable ALU which can support byte, halfword or word operations efficiently, according284
to the data width. Instead of conventional vector load/store instructions, VEGAS adopted direct285
memory access (DMA) read/write commands to achieve better storage efficiency and less mem-286
ory latency. VEGAS can achieve up to 2.8× better performance than VESPA and 3.1× better than287
VIPERS in terms of throughput-per-area, and outperforms a 2.66-GHz Intel X5355 processor on288
the integer matrix multiply benchmark.289

Despite the high performance VEGAS achieves, there are some drawbacks to the design which290
result in an area/performance overhead. First, it is cumbersome to track and spill values from the291
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8-entry vector address register file (VARF), which also consumes additional ALMs and FFs. Second, 292
while the alignment network grows super-linearly with the number of vector lanes, only one single 293
alignment network is implemented on VEGAS, which may introduce a performance penalty if the 294
operands are unaligned. 295

VENICE. Based on the architecture of VEGAS, VENICE was proposed to maximize the through- 296
put of SVPs with a small number of vector lanes [73]. While VEGAS achieved its best perfor- 297
mance/area at 4-8 lanes, VENICE was tailored to 1-4 lanes without sacrificing performance. Re- 298
moval of the vector address register file, adding a new conditional implementation, and stream- 299
lining the instructions, are the three major differences which reduce the area requirement and the 300
complexity of programming, compared to VEGAS. 2D/3D vector instructions and operations on 301
unaligned vectors were adopted to further improve the performance. VENICE can achieve over 2× 302
better throughput-per-area than VEGAS, and a speedup of 5.2× higher than the fastest Nios II/f 303
soft processor. 304

VENICE is much more area-efficient and easier to program compared with previous SVPs and 305
further improves on the VEGAS ALU utilization. Since VENICE is designed as a small and fast 306
SVP, the problem of efficiently integrating multiple VENICE components with high performance 307
and interconnect simplicity remains a future problem. 308

MXP. The VectorBlox MXP was developed as a commercial IP core which can interface to the 309
Avalon and AXI on-chip bus protocols available in Altera or Xilinx FPGAs, respectively [74]. It 310
is similar in design to VENICE, but with added features such as fixed-point arithmetic, 2D-DMA 311
support, and a C++ object based application programming interface (API) for higher level program- 312
ming. MXP can operate at over 200 MHz on a Stratix IV device with less than 16 vector lanes. A 313
64-lane configuration demonstrated a speedup of up to 918× that of a Nios II/f processor on matrix 314
multiplication. Custom vector instructions (CVIs) were introduced for the latest SVPs to integrate 315
streaming pipelines into the datapath with a minimum area overhead [72]. CVI-optimized SVPs 316
achieved a 7200× speedup and over 100× improvement in terms of performance-per-ALM, com- 317
pared to Nios II/f. 318

In general, SVPs achieve significant performance gains for data parallel applications. However, 319
the scalability of SVPs is limited by the number of vector lanes, which is determined by the hard- 320
ware resources on the FPGA. While increasing the number of vector lanes significantly increases 321
the throughput, it also leads to clock frequency degradation. Additionally, compiler support for 322
these processors is still at the primary stage as the repository of common operations and data 323
types needs to be further improved. 324

3.2.4 Soft GPUs. Graphics processing units (GPUs) have a many-core architecture with con- 325
siderable parallel processing capabilities. In general, GPUs and vector processors have many sim- 326
ilarities with both supporting SIMD-style parallelism. 327

FlexGrip. FlexGrip [4] is a soft GPU based on the Nvidia G80 architecture targeting the Xil- 328
inx ML605 platform and provides direct CUDA compilation and execution. FlexGrip follows a 329
single instruction multiple thread (SIMT) model with an instruction fetched and simultaneously 330
mapped onto multiple scalar processors (SPs). FlexGrip with 32 SPs achieves a peak speedup of 331
30× compared to MicroBlaze, but with a significant area overhead, consuming 96% of the available 332
LUTs. 333

MIAOW. MIAOW [5] is an open source RTL implementation of the AMD Southern Islands GPU 334
ISA, which is compatible with OpenCL applications. The complete system was implemented on a 335
VC707 evaluation board requiring a considerable amount of FPGA resource (195K LUTs and 137 336
BRAMs). MIAOW was validated by comparing it with commercial GPUs in terms of area, power, 337
and performance. 338
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Fig. 2. Typical overlay topologies.

FGPU. A GPU-like SIMT soft processor, referred to as FGPU [2], was proposed as a flexible solu-339
tion for software tasks. The VHDL implementation of FGPU did not use any FPGA specific IP cores340
or FPGA primitives, making it highly portable and customizable. It has a mixed ISA supporting341
both MIPS instructions and OpenCL functions. A speedup of 48.5× over MicroBlaze was achieved342
for a range of benchmarks on the ZC706 FPGA board, with a 17.7× area overhead. To achieve high343
performance, FGPU is designed with an 18-stage pipeline. Due to the complexity of the compute344
units, an 8 compute unit version of FGPU consumes 124K LUTs on the ZC706, corresponding to345
57% of the available resource.346

SCRATCH. An application-aware soft GPU, referred to as the SCRATCH framework [20], was347
developed as an upgraded version of the MIAOW GPU architecture. The main contribution of the348
SCRATCH system is the MIAOW-based architecture optimization to support additional instruc-349
tions and the SCRATCH trimming algorithm which removed unnecessary architectural function-350
ality to improvement performance. Similar to MIAOW, SCRATCH was evaluated on Xilinx Virtex351
7 FPGAs. By applying architecture trimming along with multithread and multi-core parallelism,352
SCRATCH was able to achieve a peak speedup of 260× with a 250× better energy-efficiency com-353
pared to the original MIAOW system. In addition to the improvement in throughput and energy-354
efficiency, a significant reduction in FPGA resource was observed, specifically a 36% reduction in355
LUTs and a 41% reduction in FFs.356

4 CGRA-LIKE OVERLAYS357

Coarse-grained reconfigurable architectures (CGRAs) have been extensively researched due to358
their enhanced scalability, performance and power efficiency compared to CPUs. CGRAs typically359
fall within one of two classes: processor-centric arrays which are made up of individual processors360
connected via programmable interconnect; and CGRAs with coarse/medium-grained processing361
elements (also called medium-grained processing arrays).362

4.1 Interconnect Topology363

Irrespective of the computational element (be it a processor or a dedicated processing element),364
CGRA-like overlays are characterized by an array structure of computational elements connected365
using programmable interconnect. A number of interconnect strategies exist, with the most366
common being: island style [6, 15, 25, 33, 36], nearest neighbor (NN) [11, 59], network-on-chip367
(NoC) [26, 41, 42] and to a lesser extent linear interconnect [10, 16], as shown in Figure 2. Other368
interconnect strategies are possible, including circuit switched [31] networks, but these typically369
consume significant hardware resource and are less suited for FPGA-based overlays. There are also370
variations in the more common interconnect strategies. For example, for NN, alternative topolo-371
gies include torus [59], mesh plus [61] and fully connected [76], while for NoC, many different372
typologies such as bidirectional mesh, unidirectional torus and deflection-routed torus have been373
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investigated [41]. The deflection-routed torus proves to be 3.5× more area-efficient than the bidi- 374
rectional mesh by adopting a deflection routing technique [62] to the directional torus. 375

Island style and NN interconnects are a 2-D mesh structures which to some extent have a similar 376
architecture to the interconnect on FPGAs. These interconnect strategies are highly flexible to fully 377
support direct communication between the adjacent FUs. However, they require a considerable 378
amount of the FPGA routing to implement and as a result consume a significant amount of the 379
FPGA resource [34]. In contrast, the resource requirement for a linear interconnect is significantly 380
less because of its 1-D feed-forward array structure. For example, the DeCO overlay [35], which has 381
a cone-shaped linear array of FUs which maps well to the feed-forward DFGs being accelerated, 382
has an 87% reduction in LUT utilization compared to the island-style overlay. 383

4.2 CGRA-like Processor Arrays 384

Large CGRA-like processor arrays have seen a resurgence in recent years due to the higher capacity 385
of modern FPGAs. This larger FPGA capacity, along with more efficient NoC implementations [41] 386
has meant that they are able to accommodate more complex designs. These processor arrays have 387
similarities to ASIC-based processor-centric CGRAs. Some examples include: 388

Heracles. Heracles [43] is an open-source integer-based 7-stage MIPS-III processor array with 389
a 2D-mesh topology, which consists of a NoC architecture for data communication. Synthesis 390
results showed that one processor element with cache memory consumed 5562 LUTs and 2695 391
FFs on a Virtex-5 LX330T, running at a frequency of 155MHz. The Heracles virtual-channel router 392
consumed 2058 LUTs, 2806FFs and operated at a frequency of 71MHz. Compared to the classic 393
unbalanced fat-tree [56] topology, the proposed virtual-channel router consumed only 1.7% of the 394
fabric logic, with a 2.3× higher clock frequency. However, LUT consumption became the bottleneck 395
when scaling due to the attached memory subsystem, thus Heracles was restricted to a 4×4 array 396
on Virtex-5. 397

GRVI Phalanx. GRVI Phalanx [26] is a massively parallel overlay based on an FPGA-efficient 398
implementation of the RISC-V [77] soft processor. The GRVI processor uses just 320 LUTs and 399
runs at a frequency of up to 375MHz on a Kintex UltraScale FPGA. Multiple GRVI processors with 400
shared memory and local interconnect, are formed as clusters, which efficiently communicate with 401
each other via a Hoplite NoC [41]. Implementations with 400 and 1680 RISC-V cores on a Kintex 402
UltraScale KU040 and a Virtex UltraScale+ VU9P have been reported. Currently there is minimum 403
tool support for this platform with no application performance comparisons with other overlays. 404

120-Core MIPS Overlay. A 120-core MIPS overlay [48] was developed to optimize a silicon-tested 405
microAptiv MIPS processor for FPGA implementation. The design achieved a significant reduction 406
to the original μaptiv MIPSfpga [27], by replacing the complex instruction/data cache with dedi- 407
cated scratchpads, adopting DSP blocks for multiplication and a NoC-specific modification to the 408
decoder. The improved MIPS processors with a Hoplite NoC [41] increased the maximum array 409
size from 30 to 120 cores on the DE5-NET board, while achieving a higher frequency (94MHz). 410

4.3 CGRA-Like Medium-Grained Overlays 411

CGRAs with medium-grained processing elements have an number of advantages compared to 412
CPUs, including better scalability, performance and power efficiency [28]. Additionally, compared 413
to fine-gained reconfigurable architectures, such as FPGAs, which typically consist of an array of 414
logic blocks at the bit-level (or a small number of bits), CGRAs are reconfigurable at the word-level 415
(8-bit, 16-bit, 32-bit, etc.). In CGRAs, the processing elements are typically much larger than the 416
FPGA’s fine-grained lookup tables (LUTs), and can be an arithmetic logic unit (ALU) or word-level 417
multiplier, or even a DSP primitive. This coarse granularity results in a reduction in the configu- 418
ration memory, the configuration time, and the placement and routing complexity, compared to 419
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Table 3. Selected CGRA-like Overlays

Year Name Granularity Device Fmax FPGA Resource

Arithmetic Size

2010 Heracles [43]
32-bit
Integer

Virtex 5
155MHz
4×4

12K LUTs, 8.8K FFs

2011 MIN Overlay [22]
8/32/64-bit
Integer & FP

Virtex 6
100MHz
30

22K LUTs, 4.8K FFs,
40 DSPs

2011 CARBON [8]
32-bit
Integer

Stratix III
150MHz
2×2

3K ALMs, 517 FFs,
15Kb BRAM, 4 DSPs

2012 reMORPH [65]
32-bit
Integer

Virtex 6
400MHz1

40
196 LUTs, 41 FFs,
3 BRAMs, 1 DSP2

2013 SCGRA [60]
32-bit
Integer

Zynq-7000
250MHz
2×2

5K LUTs, 9K FFs,
50 BRAMs, 12 DSPs

2016 GRVI Phalanx [26]
32-bit
Integer

UltraScale
10 × 5 × 8
375MHz

177K LUTs,
1200 BRAMs

2016 Linear TM [57]
32-bit
Integer

Zynq-7000
286MHz
8

1.7K LUTs, 1.9K FFs,
8 DSPs

2017 MIPS Overlay [48]
32-bit
Integer

Stratix V
94MHz
60×2

2.4K ALMs, 2.1K FFs,
2 DSPs, 3 M20Ks2

1Reported Fmax is only for an FU.
2Reported Resource is only for a single FU.

fine-grained FPGAs [29]. Although there has been a significant amount of CGRA research over420
the last few decades, only a few CGRAs have been commercialized, mainly because they are less421
flexible compared to FPGAs and lack a well-defined design flow [75].422

An alternative to an ASIC CGRA is the CGRA-like FPGA overlay, which implements a CGRA423
as a virtual configurable architecture on top of a reconfigurable FPGA. Initially, mapping CGRAs424
to FPGA was performed to demonstrate their functionality before ASIC implementation. More re-425
cently, specific dedicated CGRA-like FPGA overlays were developed mainly to improve the design426
productivity of FPGA. Many of these initial CGRA-like overlays were more throughput-oriented427
SC overlays which mapped each operation to a single FU to achieve an II of one. However, as men-428
tioned earlier, these overlays were relatively small due to the limited hardware resources available429
in the underlying FPGA and were unable to accommodate larger compute kernels. Recently, re-430
searchers have shifted to more area-efficient overlay architectures which are able to time-multiplex431
the operations to an FU on a cycle-by-cycle basis. This makes it possible to map larger application432
kernels to the overlay, but at the cost of throughput. A summary of some of the TM CGRA-like433
overlays is given in Table 3.434

4.3.1 TM Overlays with Homogeneous FUs. Time-multiplexed CGRA-like overlays with Homo-435
geneous FUs have the advantage that they can be more easily tiled to the FPGA architecture due to436
their regularity. Additionally, applications can be more easily scheduled as operations can be arbi-437
trarily mapped to FUs. However, having only homogeneous FUs can restrict application flexibility.438
Some examples include:439

CARBON. CARBON [8] is a CGRA-like overlay which was implemented as a 2×2 array of tiles440
on an Altera Stratix III FPGA. Each tile has an FU with a programmable ALU and instruction441
memory, supporting up to 256 instructions. An FU consumed 3K ALMs, 517 FFs, 15.6Kb BRAM, and442
4 DSP blocks, achieving an operating frequency of 150MHz. Compared to the other TM overlays443
discussed here, CARBON has a large resource requirement with a relatively slow speed which444
limits the scalability of the architecture. Additionally, the BRAMs were not effectively used to read445
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the instruction memory, which results in the need for an additional bypass register to avoid the 446
extra latency. 447

reMORPH. The reMORPH overlay [65] better targeted the FPGA fabric, with an FU consuming 448
1 DSP Block, 3 block RAMs, 196 LUTs, and 41 registers. This low footprint makes it possible to 449
implement around 40 tiles on the Xilinx Spartan 6 LX45 FPGA. A reMORPH tile uses the Xilinx 450
DSP primitive as a 5-stage pipelined ALU with a BRAM as its instruction memory, which ensures a 451
high operating frequency (400MHz). To reduce the overhead due to routing and multiplexers, the 452
reMORPH FU does not use decoders resulting in a 72-bit-wide instruction memory (supporting 453
up to 512 instructions) which causes an over utilization of BRAMs, thereby limiting the possible 454
size of this overlay. Tiles are interconnected using an NN style of non-programmable interconnect, 455
which is adapted using partial reconfiguration at runtime, and hence changing between application 456
kernels is relatively slow (that is, the overlay has a large hardware context switch time). 457

SCGRA. The SCGRA overlay [60] was proposed to address FPGA design productivity, demon- 458
strating a 10× to 100× reduction in compilation time compared to the AutoESL HLS tool. 459
Application-specific SCGRA overlays were subsequently implemented on the Xilinx Zynq plat- 460
form [59], achieving a speedup of up to 9× higher than the standalone Zynq ARM processor. The 461
FU used in the Zynq-based SCGRA overlay operates at 250MHz and consists of an ALU, multi-port 462
data memory (256 × 32 bits) and a customizable depth instruction ROM (Supporting 72-bit wide 463
instructions) which results in the excessive utilization of BRAMs. As the full FPGA bitstream needs 464
to be reconfigured for a compute kernel change, very fast context switching between applications 465
is not possible. 466

Although the SCGRA overlay allows for different size implementations, there is a significant 467
performance drop for larger implementations due to the following reasons. First, the higher BRAM 468
requirement for instruction memory means that there needs to be a tradeoff in the number of 469
BRAMs for the I/O buffer, which has a negative effect on data reuse. Second, a larger SCGRA 470
overlay will increase the routing cost between PEs, therefore reducing the compute performance. 471
Finally, the operating frequency drops as the overlay size increases, resulting in a degradation in 472
the overall performance. 473

Linear TM Overlay. An area efficient time-multiplexed overlay with linear interconnect [57, 58] 474
was proposed to reduce the interconnect requirements of array-based overlays. It consists of a 475
streaming data interface made up of Distributed RAM (DRAM) acting as a FIFO, which feeds a 476
cascade of time-multiplexed FUs, with another DRAM-based FIFO at the output. Tasks are sched- 477
uled to the overlay using ASAP scheduling, which allows data flow graph (DFG) nodes from the 478
same scheduling time step to be allocated to individual FUs. The FU uses the same principle as 479
the iDEA DSP-based processor [12], and requires 1 DSP block, 212 LUTs, and 228 FFs and runs 480
at 323MHz on a Xilinx Zynq. Cascading 8 FUs into a linear overlay consumes 1,747 LUTs and 481
1,954 FFs (814 logic slices) and 8 DSPs, and operates at a frequency of 286MHz. While this repre- 482
sents a 21% reduction in resource utilization compared to DeCO [35], it comes at the expense of a 483
significant reduction in the throughput and the II. 484

4.3.2 TM Overlays with Heterogeneous FUs. Time-multiplexed CGRA-like overlays with Het- 485
erogeneous FUs have the advantage that they can support a wider range of applications, including 486
mixed integer and floating point applications. Some examples include: 487

MIN Overlay. The MIN overlay consists of heterogeneous FUs, which are connected by a global 488
multi-stage interconnection network (MIN) [22]. The heterogeneous FUs can support up to 64-bit 489
floating point computations. MIN uses a global interconnect network instead of the traditional 490
2-D array topology, which significantly reduces the routing resource requirements, resulting in 491
better hardware resource utilization. Compared with the crossbar network in TILT, the proposed 492
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two parallel blocking MINs reduce the cost complexity from O (n2) to O (n logn). A number of493
different parameterized architectures, chosen to evaluate the impact of the number and types of494
FU, memory and I/O, were implemented on a Virtex 6 FPGA. The smallest architecture (called A1)495
has 30 FUs and a 64 I/O global network and consumes around 1% of registers, 4% of DSPs and 15%496
of LUTs, while running at a frequency of 100MHz. A heuristic scheduling, placement and routing497
algorithm was used and could achieve just-in-time compilation in less than 300ms. While MIN498
has relatively good FPGA resource utilization, the LUT usage due to the routing network in larger499
designs will eventually become the limiting factor. Additionally, in some cases, routing fails due500
to missing registers which could be overcome by adding a register file in some of the FUs.501

5 DISCUSSION AND CONCLUSIONS502

TM overlays for FPGA are reasonably mature with processor-based TM overlays being better ac-503
cepted compared to CGRA-like overlays. This is because the processor-based overlays have the504
advantage of well understood ISAs and easily accessible compilation tool chains making applica-505
tion development much easier for non-hardware designers. Furthermore, processor-based overlays506
using parallel processing techniques, such as multi-issue, multithreading, VLIW, and vector pro-507
cessing, have been developed and shown to improve overlay performance. However, these overlays508
suffer from similar problems to processors implemented directly in silicon, such as being complex509
with significant resource utilization and power consumption, which tends to negate some of the510
designer productivity advantages (such as their software programmability).511

On the other hand, CGRA-like TM FPGA overlays have only really appeared within the last512
several years. These overlays are again targeted at improving FPGA designer productivity, and513
are better tailored towards area-efficient higher speed processing than processor-based overlays,514
although they still suffer from a lower speed and higher FPGA resource utilization than direct HDL-515
or HLS-based application implementation on FPGA. Recent CGRA-like overlays better utilize the516
coarse-grained modules present in modern FPGAs, such as DSP blocks and BRAMs. These overlays517
are particularly targeted towards the acceleration of compute intensive loops [59].518

A selection of the TM overlays from the literature (both processor-based and CGRA-like)519
are summarized in Table 4. Table 4 categorizes the different overlays based on the overlay type520
and provides an indication of the computational throughput and the relative FPGA resource521
consumed. So that the overlay’s implementation technology does not overly impact the through-522
put and resource utilization, both these metrics have first been nominally normalized to that523
of a Virtex 7 implementation. The throughput is normalized by multiplying by the ratio of the524
maximum Virtex 7 BRAM frequency divided by the maximum BRAM frequency of the original525
target device, while the resource consumption is determined by considering the total system526
resource utilization (adjusted to account for technology changes, such as the transition from527
4-LUTs to 6-LUTs) divided by the number of cores/FUs. However, it should be noted that it is528
difficult to compare the performance of the various overlays due to the different architectures529
involved. Processor-based overlays can be compared to existing processors, such as to soft core530
processors from the major FPGA vendors. The array based overlays are more difficult to compare531
as they are relatively newer and less established, with limited system level support available to532
make a general comparison to other overlays. Where possible a comparison between the existing533
overlays from the literature is presented (as the Speedup column) in Table 4. The advantages and534
disadvantages of the different overlay types are also presented.535

In conclusion, this article introduces FPGA overlay architectures and classifies them into two536
categories: SC overlays and TM overlays. Existing TM FPGA overlays are then focused upon,537
with a comprehensive survey of these overlays from the research literature being presented. TM538
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overlays are further categorized as processor-based overlays (as their implementation follows that539
of conventional silicon-based processors) and CGRA-like overlays (with both processor-based FUs540
and medium-grained FUs).541

Time-multiplexing the overlay allows it to change its behavior, cycle by cycle, during the com-542
pute kernel execution, thus allowing better sharing of the limited FPGA resources. However, most543
of the TM overlays described still suffer from relatively large area overheads, due to either their544
underlying processor-like architecture or, for CGRA-like overlays, due to the routing resources545
and instruction storage requirements. Reducing the area overhead for CGRA-like overlays, specif-546
ically for the routing network, and utilizing the fast context switch capabilities of these overlays547
are likely to result in better usability with corresponding improvements in design productivity.548
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