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ABSTRACT
Coarse-grained overlay architectures have been shown to be
effective when paired with general purpose processors, of-
fering software-like programmability, fast compilation, and
improved design productivity. These architectures enable
general purpose hardware accelerators, allowing hardware
design at a higher level of abstraction, but at the cost of
area and performance overheads. This paper examines the
DySER overlay architecture as a hardware accelerator paired
with a general purpose processor in a hybrid FPGA such
as the Xilinx Zynq. We evaluate the DySER architecture
mapped on the Xilinx Zynq and show that it suffers from a
significant area and performance overhead. We then propose
an improved functional unit architecture using the flexibility
of the DSP48E1 primitive which results in a 2.5 times fre-
quency improvement and 25% area reduction compared to
the original functional unit architecture. We demonstrate
that this improvement results in the routing architecture
becoming the bottleneck in performance.

1. INTRODUCTION
Emerging reconfigurable platforms tightly couple capable

processors with high performance reconfigurable fabrics [1].
This promises to move the focus of reconfigurable computing
systems from static accelerators to a more software oriented
view, where reconfiguration is a key enabler for exploiting
available hardware resources. This requires a revised look at
how to use reconfigurable hardware within a software-centric
processor-based system. Recently, coarse grained overlay ar-
chitectures have been shown to be effective when paired with
general purpose processors [2, 3] as this allows the hardware
fabric to be viewed as a software-managed hardware task,
enabling more shared use. Overlay architectures consist of
a regular arrangement of coarse grained routing and com-
pute resources. The key attraction of overlay architectures is
software-like programmability through mapping from high-
level descriptions, application portability across devices, de-
sign reuse, fast compilation by avoiding the complex FPGA
implementation flow, and hence, improved design productiv-
ity. Another main advantage is rapid reconfiguration since
the overlay architectures have smaller configuration data
size due to the coarse granularity. Reconfiguration time in a
dynamically reconfigurable system has an impact on overall
application performance as shown in [4]. Although research
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in the area of overlay architectures has increased over the
last decade, the field is still in its infancy with only rela-
tively few overlay architectures demonstrated in prototype
form [3, 5, 6]. One such example is the DySER architecture
targeted to the Xilinx Virtex-5 FPGA [7]. Area and per-
formance overheads have, however, prevented the realistic
use of DySER in practical FPGA-based systems. One of
the reasons for this poor performance is that overlays are
typically designed without serious consideration of the un-
derlying FPGA architecture.

Embedded hard macros, such as DSP blocks, have been
added to FPGAs in recent years. By building often used
functions into optimised compact primitives,area, perfor-
mance, and power advantages are achieved over equivalent
“soft” implementations in the logic fabric. Many existing
overlay architectures [3, 5, 6, 7] do not specifically use these
macros, except insofar as they are inferred by the synthe-
sis tools. However, it is well known that inference of hard
macros by synthesis tools does not result in optimal through-
put [8]. Xilinx DSP blocks have recently been shown to
enable high speed soft processors by taking advantage of
flexible control signals to implement alternative functions
on the same primitive at different times [9].

The novel contribution of this paper is the efficient and
practical implementation of the DySER architecture on the
Xilinx Zynq. This DySER overlay can then be used to host
accelerators to offload data-parallel compute kernels from
compute-intensive applications running on the ARM pro-
cessor. We demonstrate how adopting the Xilinx DSP48E1
primitive in the functional unit (FU) of the DySER architec-
ture improves both performance and area. The main con-
tributions can be summarized as follows:

• RTL implementation of a functional unit (compati-
ble with the DySER architecture) using the DSP48E1
primitive, which can operate at near theoretical max-
imum frequency.

• A quantitative analysis of area overheads of the mod-
ified DySER architecture by mapping a set of bench-
marks to DySER and to the FPGA fabric using Vivado
HLS.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the state of the art in high performance over-
lay architectures as hardware accelerators. In Section 3, we
describe the DySER architecture, functional unit and imple-
mentation on the Xilinx Zynq. Section 4 presents the modi-
fied functional unit architecture using the flexible DSP48E1
primitive. We then present a quantitative analysis of area
overheads in Section 5 and conclude the paper in Section 6.
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2. RELATED WORK
Overlay architectures have been proposed as a technique

for reducing the prohibitive compilation time required to
map an application to the conventional fine-grained FPGA
fabric. They can be broadly classified into two categories.
In the first, the virtual logic and routing of the overlay are
unchanged while a compute kernel is executing [3, 5, 6], and
in the second, the virtual logic and routing of the overlay
change on a cycle by cycle basis while a compute kernel is
executing [10, 11]. In this work we only consider overlay
architectures from the first category.
QUKU [3] was implemented on a Xilinx Virtex-4 LX25

device as a fixed configuration array of processing elements
(PEs) interconnected via an application-specific customized
interconnect. A 4×4 reconfigurable homogeneous array of
PEs required 40% extra resources compared to point-to-
point connectivity with four immediate neighbouring PEs.
Another overlay architecture, referred to as an intermediate
fabric (IF) [5], was proposed to support near-instantaneous
placement and routing. The IF in [5] was implemented on
an Altera Stratix III FPGA in order to evaluate area and
performance. It enabled a 700× improvement in compila-
tion time compared to vendor tools at the cost of approx-
imately 40% extra resources on the FPGA. It consists of
192 heterogeneous functional units comprising 64 multipli-
ers, 64 subtractors, 63 adders, one square root unit, and five
delay elements with a 16-bit datapath and supports fully
parallel, pipelined implementation of compute kernels. A
high throughput (60 GOPS) overlay [6] was implemented
on Altera Stratix IV FPGA at the cost of 67% area over-
head. This 24×16 overlay is a nearest-neighbour-connected
mesh of 214 routing cells and 170 heterogeneous functional
units (FUs) comprising 51 multipliers, 103 adders and 16
shift units. The major problem with all of these architec-
tures is that they consume significant resources to offer this
programmability and ease of compilation.

DySER [12, 13] was proposed to improve the performance
of general purpose processors by integrating dynamically
specialized execution resources into the processor pipeline.
The concept of DySER is very similar to the coarse grained
overlay architectures of [3, 5, 6]. It also exhibits similari-
ties with conventional tiled architectures such as RAW [14],
WaveScalar [15] and TRIPS [16]. DySER was originally
designed as a heterogeneous array of 64 functional units in-
terconnected with a circuit-switched mesh network and im-
plemented as an ASIC.
The DySER architecture was improved and then proto-

typed, along with the OpenSPARC T1 RTL, on a Xilinx
XC5VLX110T FPGA [7]. DySER had a critical timing path
of 12.7 ns, compared to the 10.1 ns critical timing path of
OpenSPARC. However, due to excessive LUT consumption,
it was only possible to fit a 2×2 32-bit DySER, a 4×4 8-bit
DySER or an 8×8 2-bit DySER on the FPGA. The 2×2 32-
bit DySER (supporting just 4 operations) is of limited value
in performance evaluation, and instead a 4×4 DySER (sup-
porting up-to 16 operations) or an 8×8 DySER (supporting
up-to 64 operations) is required to provide meaningful per-
formance comparisons.

The DySER architecture, although relatively efficient from
an application mapping perspective, suffered because it was
implemented without much consideration for the underlying
FPGA architecture. Considering the presence of hard macro
blocks, and previous work that has demonstrated how these

can be used for general processing at near to their theoret-
ical limits [9, 17], we propose enhancing DySER by using
the DSP48E1 found in all modern Xilinx FPGAs to take on
most functions of the FU.

3. THE DYSER ARCHITECTURE
The DySER architecture consists of two blocks, the tile

fabric and the edge fabric, where each tile in the tile fabric
instantiates a switch and a functional unit (FU), while the
edge fabric only instantiates a switch, forming the boundary
at the top and left of the tile fabric. The resulting architec-
ture contains I/O ports around the periphery of the fabric,
which are connected to FIFOs. A simple 2×2 DySER over-
lay, consists of four tile instances and five switch instances
along the North and West boundaries, resulting in 4 FUs
and 9 switches, as shown in Fig. 1. Extrapolating this to an
N ×N DySER architecture results in N2 FUs and (N +1)2

switches.

FU

Switch

FU

Switch

FU

Switch

FU

Switch
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Switch SwitchSwitch

Figure 1: Architecture of a 2×2 DySER.

3.1 DySER Switch
The switches allow datapaths to be dynamically special-

ized. They form a circuit-switched network that creates
paths from inputs to the functional units, between func-
tional units, and from functional units to outputs. Switches
in DySER have 5 inputs (4 from neighbour switches and 1
from the functional unit at the North-West direction) and 8
outputs (to all 8 directions). Hence, switches require a 5:1
multiplexer and a state machine for synchronization at each
output.

3.2 DySER Functional Unit
The functional unit (FU) provides resources for the math-

ematical and logical operations, and synchronization logic.
It receives its input values from the four neighbouring
switches and outputs its result to the switch in the south-
east direction. The FU consists of programmable computa-
tion logic and a state machine as synchronization logic at
each input and output of the computation logic. The state
machine implements a credit-based flow-control protocol to
enable receiving of inputs asynchronously at arbitrary times
from the FIFO interfaces.
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Figure 2: Functional unit architecture.

The operators in the FU can be selected according to
application requirements. We choose four operators: Add,
Sub, Mul and OR in the FU, as shown in Fig. 2, to map the
benchmarks from [18]. The benchmark characteristics are
shown in Table 1. Benchmarks, where a small code region
dominates the runtime, and where computation can easily
be scheduled, are taken from [18]. These benchmarks mimic
the workloads of the PARBOIL suite.

Table 1: Benchmark Characteristics

No. Benchmark Add Sub Mul OR Total

1. fft 3 3 4 10

2. kmeans 7 8 8 23

3. mm 7 8 15

4. mri-q 3 6 1 10

5. spmv 6 8 14

6. stencil 10 2 2 14

7. conv 8 8 16

8. radar 6 2 8

The original DySER FU was implemented using Xilinx
ISE 14.6 targeting a Xilinx Zynq XC7Z020. The FU con-
sumes 49 Slices (148 LUTs, 66 FFs) and 1 DSP48E1 block,
with a critical path of 6.7 ns. Hence the maximum operating
frequency of the FU is 150MHz. Fig. 3 shows the physical
mapping of the FU to the FPGA fabric. While synthesizing,
the tool infers a DSP block for multiplication. The remain-
der of the operations and the multiplexer in the compute
logic are mapped to 17 Slices (57 LUTs). State machines
and input selection multiplexers are mapped to 32 Slices
(91 LUTs and 66 FFs). After integrating the FU into the
DySER tile and implementing it on the FPGA fabric, we
found that the critical path in the DySER Tile is the same
as the critical path of the FU (6.7 ns), and hence the FU
limits the performance of the DySER tile.

4. DSP BLOCK BASED DYSER
Building on the advantages of hard DSP macros for im-

plementing high speed processing elements, we examine the
use of the Xilinx DSP48E1 primitive as a programmable FU

Embedded 
Processor

 (ARM Cortex-A9)

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Figure 3: Physical mapping of functional unit on FPGA.

in DySER targeting data-parallel compute kernels. Despite
the fact that the original FU uses a DSP block for multipli-
cation, it does not fully exploit the performance advantage
of the DSP block. Since the DSP48E1 can be dynamically
configured and used for operations required by the FU, we
show that an area and performance efficient FU can be built
by making use of DSP block as an ALU, instead of just as
a multiplier, and enabling the internal pipeline registers of
the DSP block.

4.1 DSP48E1 Based Functional Unit
We use the DSP48E1 primitive, as shown in Fig. 4, to im-

plement computation logic in the modified functional unit.
The DSP48E1 primitive has a pre-adder, a multiplier, an
ALU, four input ports for data, and one output port P,
as shown in Fig. 4, and can be configured to support vari-
ous operations such as multiply, add, sub, bitwise OR, etc.
These functions are determined by a set of dynamic con-
trol inputs that are wired to configuration registers. The
DSP48E1 primitive is directly instantiated providing total
control of the configuration of the primitive. This allows us
to maximize the compute kernel throughput and achieve a
high FU frequency by operating the DSP48E1 at its maxi-
mum frequency.
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Figure 4: DSP48E1 based functional unit architecture.

We enable all of the pipeline stages of the DSP48E1 primi-
tive. The redesign of the DySER functional unit replaces the
original compute unit (CU), shown in Fig. 2, with the fully
pipelined DSP48E1 primitive, along with modifications to
the done signal generation logic and configuration decoding
logic, as shown in Fig. 4. The two inputs from the FU (to
the CU) are connected to the three ports of the DSP48E1
primitive, as shown in Fig. 4. The FU configuration reg-
ister includes 2 bits for operation selection with the other
14 bits for constant and input multiplexers. Additionally,
we require three 16-bit registers at the DSP input ports
(as shown in Fig. 2), consuming 48 FFs to balance the in-
ternal pipeline stages of the DSP block. Table 2 shows the
DSP48E1 configuration settings required for each operation.
Inmode remains same for all of the operations and hence we
hard-code it to 00000.

Table 2: DSP48E1 configuration for each operation

Operation ALUMODE OPMODE INMODE

ADD 0000 011 0011 00000
SUB 0011 011 0011 00000
MUL 0000 000 0101 00000
OR 1100 011 1011 00000

4.2 Analysis of Performance Improvement
We analyze the performance improvement of the FU in

terms of frequency and resource usage. The DSP48E1 based
FU consumes 37 Slices (116 LUTs, 117 FFs) (25% less than
the original FU) and 1 DSP block. Apart from obvious area
savings, the strategy of using a fully pipelined DSP block
as the computational part of the FU also improves overall
timing performance. The FU has a critical path of just
2.7 ns, resulting in a maximum frequency of 370 MHz, which
is 2.5× that of the original FU. Fig. 5 shows the physical
mapping of functional unit onto the FPGA fabric.

Since a hard primitive is used for the implementation of
CU operations, only minimal additional circuitry is imple-
mented in the logic fabric which consists of configuration de-

Functional Unit

FPGA Fabric

DSP48E1 Primitive

Embedded 
Processor

 (ARM Cortex-A9)

Figure 5: Physical mapping of enhanced functional unit.

coding logic, three 16-bit balancing registers and done signal
generation logic. All of this additional circuitry is mapped
to 10 Slices (25 LUTs and 51 FFs). State machines and in-
put selection multiplexers are mapped to 27 Slices (91 LUTs
and 66 FFs).

By integrating the enhanced FU into the DySER tile and
implementing it on the FPGA fabric, we found that the
critical path of the switch, which is 5.3 ns, now limits the
performance of the DySER tile. Fig. 6 shows the physi-
cal mapping of the DySER Tile to the FPGA fabric. It is
clear that the major area overhead in DySER is due to sig-
nificant resources consumed in the switch implementation.
The switch consumes 251 Slices (995 LUTs and 325 FFs)
and hence the whole tile consumes 288 Slices (1118 LUTs
and 447 FFs). The largest source of area overhead comes
from the multiplexing logic in the switch which can be min-
imized by using techniques mentioned in [19, 20, 21].

We have shown that a more architecture-oriented ap-
proach to designing the FU enables it to be small and fast.
As a result the routing for the coarse grained array becomes
the limiting factor which must be addressed.
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Figure 6: Physical mapping of the DySER Tile on FPGA.

5. AREA OVERHEAD QUANTIFICATION
The overlay fabric is implemented by replicating tiles and

switches on the FPGA fabric. One tile consumes 2.16% of
Slices and one switch consumes 1.88% of the Slices present in
the fabric. As discussed previously, anN×N DySER overlay
incorporatesN2 Tiles in the tile fabric and 2N+1 switches in
the edge fabric. Hence, theoretically a 6× 6 DySER overlay
is the largest that can fit on the Zynq-7020. Table 4 shows
the resource usage for different DySER overlay sizes while
Fig. 7 shows the FPGA resource utilization.

As a comparison, albeit an unfair one as we are compar-
ing static implementations requiring a relatively long com-
pile time with rapidly compiled dynamic implementations,
we generate RTL of the compute kernels using Vivado HLS
2013.2 in order to perform a quantitative analysis of area
overheads. Table 3 shows the results for the Vivado HLS
implementations of the benchmarks. The compute kernels
ranged from using 0.3-1.1% (on average 0.6%) of the total

Table 4: Resource usage for 16-bit DySER on Zynq-7020

Resource type 2x2 3x3 4x4 5x5 6x6

LUTs 5330 12785 22306 33875 48171

FFs 2781 5493 8950 13390 18728

Slices 2458 6538 9700 12284 13244

DSPs 4 9 16 25 36
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Figure 7: % Resource usage of Zynq-7020 for 16-bit DySER

LUTs in the FPGA, 0.4-1.2% (on average 0.7%) of the total
FFs in the FPGA, 0.7-1.6% (on average 1.3%) of the total
Slices in the FPGA and 0.9-3.6% (on average 2.8%) of the
total DSP blocks in the FPGA.

A fixed configuration 5 × 5 FU array can be used to im-
plement all of the compute kernels without flexible routing.
This consumes 5.5% LUTs, 2.7% FFs, 6.9% Slices and 11.4%
DSP blocks, while a fully functional 5 × 5 DySER overlay
consumes 63.7% LUTs, 12.6% FFs, 92.4% Slices and 11.4%
DSP blocks. We assess the overhead of the programmabil-
ity in a similar way to [6]. The programmability overhead
is the ratio of the DySER overlay resources to those of the
fixed configuration array of FUs that comprise it. Hence, a
5 × 5 DySER overlay can be used to implement all of the
compute kernels with a programmability overhead of 11×
more LUTs, 5× more FFs, and 13× more Slices.

Table 3: Experimental results for the Vivado-HLS implementations of the benchmark set

Benchmark LUTs FFs Slices DSPs Frequency (MHz)

fft 218 (0.4%) 485 (0.4%) 117 (0.9%) 4 (1.8%) 324

kmeans 613 (1.1%) 1252(1.2%) 215 (1.6%) 8 (3.6%) 249

mm 315 (0.6%) 920 (0.8%) 205 (1.5%) 8 (3.6%) 295

mri-q 243 (0.4%) 588 (0.5%) 147 (1.1%) 6 (2.7%) 268

spmv 292 (0.5%) 842 (0.8%) 180 (1.3%) 8 (3.6%) 297

stencil 460 (0.8%) 870 (0.8%) 200 (1.5%) 2 (0.9%) 303

conv 353 (0.6%) 918 (0.8%) 222 (1.6%) 8 (3.6%) 272

radar 163 (0.3%) 457 (0.4%) 92 (0.7%) 6 (2.7%) 304

5×5 FU array 2900 (5.5%) 2925 (2.7%) 925 (6.9%) 25 (11.4%) 370

5×5 DySER 33875 (63.7%) 13390 (12.6%) 12284 (92.4%) 25 (11.4%) 175
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6. CONCLUSION
We have presented an enhancement to the DySER coarse-

grained overlay that uses the Xilinx DSP48E1 primitive to
implement most of the functional unit, improving area and
performance. We show an improvement of 2.5× in frequency
and a reduction of 25% in area compared to the original
functional unit design. We quantify the area overheads by
mapping a set of benchmarks to the DySER overlay and
to the FPGA fabric using Vivado HLS. The experimental
results show that a 5× 5 DySER overlay can be used to im-
plement all of the compute kernels with a programmability
overhead of 11× LUTs, 5× FFs, 13× Slices.
We have demonstrated that an architecture-focused FU

design exposes the significant overhead of the flexible rout-
ing. Hence we believe optimizing the switch network to re-
duce this overhead is a key priority. We are exploring alter-
native approaches to communication in the context of such
overlays. Integrating DySER control with the ARM pro-
cessor and cycle by cycle reconfiguration of the DSP block
in the functional unit would enable us to explore resource
sharing for larger applications.
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