

Fixed-Point FPGA Implementation of the FFT Accumulation Method for Real-time Cyclostationary Analysis

Carol Jingyi Li, Xiangwei Li, Binglei Lou, Craig T. Jin, David Boland, Philip H.W. Leong

Email: Jingyi.li@sydney.edu.au

Introduction

A time series is said to be **cyclostationary** if its probability distribution varies periodically with time.

Contribution

- The first analytical SQNR model.
 - Fixed-point implementations of the FAM technique.
 - Tradeoffs between **precision** and **area**.
- A quantitative comparison of two wordlength assignment strategies.
 - FAM_M1 fixed wordlength
 - FAM_M2 mixed precision
- A highly parallel architecture.
 - Minimises resource usage through precision optimization.
 - HLS implementation achieves the **best** reported throughput and **lowest** power consumption.

SCD Signal Flow Graph

The University of Sydney

Quantization noise model

Fixed-point:
$$a = -a_{B-1} + \sum_{i=0}^{B-2} a_i, 2^{i-(B-1)}$$

Range: [-1,1) B: wordlength F: fractional bits (F = B-1)

Rounding Error

$$\sigma_m^2 = \frac{(2^{-F})^2}{12}$$

Truncation Error

$$\sigma_{ad}^2 = \frac{(2^{-F})^2}{8}$$

SCD Signal Flow Graph for FAM_M1 (Fixed)

The University of Sydney

SCD Signal Flow Graph for FAM_M2 (Mixed)

Quantization Error Analysis

- FAM_M1

 Requires rescaling after additions to avoid

overflow

- <u>– FAM_M2</u>
 - -Higher SQNR
 - -Uses longer wordlengths

Quantization Error Analysis for FAM_M2

SCD Signal Flow Graph for FAM_M2

FSTRIDE in FFT2

Pipelining the CMF unit

Sparse SCD matrix output

- To minimise accelerator-to-host bandwidth

Symmetry

- Quarter SCD matrix

$$\hat{S}_x^{\alpha}(f) = \hat{S}_x^{\alpha}(-f)$$
$$\hat{S}_x^{-\alpha}(f) = \hat{S}_x^{\alpha}(f)^*$$

Optimisation breakdown

Resource Utilization for FAM_M2 (Quarter)

	WL	LUTs	DSPs	FFs	BRAMs	SQNR	Fmax (MHz)
Percentage of XCZU28DR	16	23.0%	24.5%	10.5%	16.4%	71.05	200
Resources		425,280	4,272	850,560	1,080		

Comparison with Previous Works

Platform	Throughput (MS/s)	Energy (mJ)	Power (W)
Tegra K1 [1]	0.018	390.64	3.5
Tesla K20 [1]	0.228	457.98	51
ZedBoard+TegraK1[1]	0.04	254.75	5
Tesla K40 [2]	6.8	16.817	55.5
ZCU111[3]	31.5	0.8125	12.5
ZCU111Opt_Quarter	50	0.3116	7.6

[1] N. Bidyanta et al., "GPU and FPGA based architecture design for real-time signal classification", 2015
[2] S. Marshall et al., "GPGPU based parallel implementation of spectral correlation density function", 2020
[3] Xiangwei Li et al., "A Scalable Systolic Accelerator for Estimation of the Spectral Correlation Density Function and Its FPGA Implementation", 2022

Conclusion

- Optimised implementation of the FAM technique

- Analytic Quantization Error Analysis
- Mixed-precision model has much better SQNR than fixed wordlength
- Presented architecture which exploited Spatial Parallelism, Pipelining, I/O optimization, and Symmetry to achieve high throughput and energy consumption to achieve a > 3000x speedup over serial implementation
- Future work: use this as preprocessing for real-time cyclostationary applications

Questions?

