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Abstract—Coarse-grained FPGA overlay architectures paired
with general purpose processors offer a number of advantages
for general purpose hardware acceleration because of software-
like programmability, fast compilation, application portability,
and improved design productivity. However, the area overheads
of these overlays, and in particular architectures with island-style
interconnect, negate many of these advantages, preventing their
use in practical FPGA-based systems. Crucially, the interconnect
flexibility provided by these overlay architectures is normally
over-provisioned for accelerators based on feed-forward pipelined
datapaths, which in many cases have the general shape of
inverted cones. We propose DeCO, a cone shaped cluster of
FUs utilizing a simple linear interconnect between them. This
reduces the area overheads for implementing compute kernels
extracted from compute-intensive applications represented as
directed acyclic dataflow graphs, while still allowing high data
throughput. We perform design space exploration by modeling
programmability overhead as a function of overlay design param-
eters, and compare to the programmability overhead of island-
style overlays. We observe 87% savings in LUT requirements
using the proposed approach compared to DSP block based
island-style overlays. Our experimental evaluation shows that the
proposed overlay exhibits an achievable frequency of 395 MHz,
close to the DSP theoretical limit on the Xilinx Zynq. We also
present an automated tool flow that provides a rapid and vendor-
independent mapping of the high level compute kernel code to
the proposed overlay.

I. INTRODUCTION AND RELATED WORK

Research efforts have shown the advantages of FPGA accel-
erators in a wide range of application domains [1]. However,
while the rapidly increasing logic density and more capable
hard resources like DSP blocks in modern FPGAs should make
them applicable to a wider range of domains, the difficulty of
hardware design, long compilation times, and poor design pro-
ductivity are major issues preventing the mainstream adoption
of FPGA based accelerators in general purpose computing [2].
Design productivity remains a major challenge, restricting the
effective use of FPGA based accelerators to niche disciplines
requiring highly skilled hardware design engineers.

One technique for addressing design productivity is to use
high-level synthesis (HLS) [3]. Numerous design languages
and environments have been developed to allow designers to
focus on high level functionality instead of low-level imple-
mentation details. However, achieving the desired performance
often still requires detailed low-level design engineering effort
that is difficult for non-experts. Even as HLS tools improve in
efficiency, prohibitive compilation times (specifically the place
and route times in the backend flow) still limit productivity and

mainstream adoption. Thus, there is a growing need to make
FPGAs more accessible to application developers who are
accustomed to software API abstractions and fast development
cycles, hence the need to relook at how to exploit the key
advantages of the FPGA hardware resource, beyond that which
is achievable using HLS Tools.

Coarse-grained FPGA overlay architectures have been
shown to be effective when paired with general purpose
processors, offering software-like programmability, fast com-
pilation, application portability and improved design produc-
tivity [4], [5], [6]. Application kernels can be rapidly compiled
to target them [7] and they can be tightly coupled with
general purpose processors [5] or as a part of the proces-
sor pipeline [8]. Run-time management of these accelerator-
processor systems, including overlay configuration and data
communication, using both an operating system (Linux) [6]
and a hypervisor [5] have been demonstrated. Instead of requir-
ing a full cycle through the vendor tools, overlay architectures
present a simpler problem, that of programming an intercon-
nected array of functional units (FUs). However, overlays are
not intended to replace traditional hardware design tool flows
and are instead intended to support FPGA usage models where
programmability, resource sharing, context switch time, fast
compilation, and design productivity are critical issues.

Although research in the area of overlay architectures has
increased recently, the field is still in its infancy with only
a few FPGA overlay architectures demonstrated in prototype
form [5], [6], [7], [8]. These architectures enable general
purpose hardware accelerators, allowing hardware design at
a higher level of abstraction, but at a cost in terms of area and
performance overheads due to limited consideration for the
underlying FPGA architecture. These overheads prevent the
realistic use of overlays in practical FPGA-based systems [8].
One of the main reasons for this poor performance is that
many of the early overlay architectures are designed without
serious consideration of the underlying FPGA architecture [9].
Previous work has shown that DSP block based overlays can
greatly improve performance in terms of throughput by using
the full capability of highly pipelined DSP blocks along with a
flexible island-style interconnect architecture [10], [11]. How-
ever, supporting the full flexibility of island-style interconnect
contributes to a significant area overhead. Furthermore, this
level of interconnect flexibility is normally not required for
implementing accelerators based on feed-forward pipelined
datapaths, which in many cases have the general shape of
inverted cones [12], [13].
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A. Related Work

Extracting maximum performance from DSP blocks is
rarely possible using generic RTL design. However, even large
datapaths can reach close to the theoretical frequency limit if
designed carefully around the structure and pipelining of these
blocks [14].

Coarse grained overlay architectures have gained promi-
nence for the hardware acceleration of compute kernels, as
they offer fast compilation, hardware design at a higher
level of abstraction, improved programmability and run-time
management [4], [5], [6], [7], [8], [9], [10], [11], [15], [16],
[17]. However, when implemented on top of a fine grained
FPGA, these features come at the cost of additional area
and performance overheads. Hence, significant recent research
effort has aimed to reduce area overheads while improving
performance.

An overlay architecture based on an island-style intercon-
nect architecture with a channel width (CW) of two, referred
to as an intermediate fabric (IF), was mapped to a Xilinx
XC5VLX330 FPGA, along with a low overhead intercon-
nect [18]. A baseline and the optimized overlay used 196
FUs (DSP blocks) resulting in a 14×14 processing array. The
baseline overlay used 91K LUTs (44% of the available LUTs)
with an Fmax of 131 MHz while the optimized overlay used
50K LUTs (24% of the LUTs) with an Fmax of 148 MHz.
This resulted in a LUT/FU count of 465 and 255, respectively.
However, the overlay did not fully utilize the DSP block
capabilities as the FU only utilized the DSP multiplier.

A fully pipelined DSP block based overlay architecture [10]
mapped to a Xilinx Zynq XC7Z020 used node merging to
combine multiple compute kernel operations to better target
the DSP block, resulting in an average reduction of 35% in
the number of processing nodes required. An 8×8 overlay
used 28K LUTs (52% of the LUTs) and achieved an Fmax of
338 MHz resulting in a LUT/FU count of 437. A throughput
better than the direct implementation of the benchmarks using
Xilinx Vivado HLS was reported due to the deep pipelining
used in the FU.

DySER [19] was proposed as a coarse grained overlay
architecture for improving the performance of general purpose
processors. Originally designed as a heterogeneous array of 64
functional units interconnected with a circuit-switched mesh
network and implemented in an ASIC, the DySER architecture
was improved and implemented along with the OpenSPARC
T1 on to a Xilinx XC5VLX110T FPGA [8]. However, due
to excessive LUT consumption, it was only possible to fit
a 2×2 32-bit, a 4×4 8-bit, or an 8×8 2-bit overlay on the
FPGA. An adapted version of a 6×6 16-bit DySER overlay
was implemented on a Xilinx Zynq XC7Z020 [9] by using
a DSP block as the PE, thus better targeting the architecture
to the FPGA. A benchmark set of 8 compute kernels having
up to 23 operations required a 5×5 overlay, consuming 34K
LUTs (64% of the LUTs) on the Zynq, resulting in a LUT/FU
count of 1360.

While some specialized overlays have also been proposed,
such as QUKU [4], these require manual design and descrip-
tion based on an architectural template. QUKU was proposed
as a rapidly reconfigurable coarse grained overlay architec-

ture [4] designed to bridge the gap between soft processors
and customized circuit implementations. It was implemented
on a Xilinx Virtex-4 LX25 device as a fixed configuration
array of processing elements (PEs) interconnected via an
application specific customized interconnect, and achieved an
Fmax of 175 MHz. A similar approach was presented in [20]
by merging the datapaths of a kernel set to generate a general
overlay referred to as a supernet. Supernets were compared
to island-style overlays and demonstrated an area overhead
reduction of up to 9×.

B. Motivation
In reviewing the literature, we find that many proposed

overlays are developed with little consideration for the un-
derlying FPGA architecture. The presence of DSP block rich
FPGA fabrics in modern devices, and previous work that
has demonstrated how DSP blocks can be used for general
processing at near to their theoretical limits [21], has re-
sulted in the development of overlays with improved Fmax

and throughput [10]. Those overlays that do achieve good
Fmax and throughput [16], [10] still suffer from significant
resource overheads associated with the routing network. Thus
the resource overhead associated with overlay architectures,
particularly the routing network, is still a concern. Many
existing overlay architectures use general-purpose island-style
interconnect which allows all FUs to communicate with each
other at the expense of a significant area overhead. However,
this interconnect flexibility is a significant over-provision.

A number of authors have instead proposed a linear array of
interconnected FUs [15], [20] to improve resource utilization.
A domain specific reconfigurable array, with a linear feed
forward interconnect structure and with array dimensions de-
termined by merging the datapaths of all DFGs, was proposed
in [13]. However this approach resulted in heavy underutiliza-
tion of FUs, with not more than 40% utilization when mapping
DFGs. Instead, it was observed that better utilization could
be achieved if the FU architecture was customized to better
match the shape of the DFGs [13], which in many cases have
the general shape of an inverted cone.

We propose performing an analysis of linear interconnect
overlays from the perspectives of both DFG structure and
interconnect flexibility, which we term the programmability
overhead, aiming to customize the typical rectangular array of
FUs to produce a cone shaped cluster of FUs utilizing a simple
linear interconnect. This would reduce the area overheads
when implementing compute kernels extracted from compute-
intensive applications represented as directed acyclic dataflow
graphs by better targeting the set of FUs, while still allowing
high data throughput. To achieve this, we perform design space
exploration of possible linear data flow overlay architectures
by modeling the programmability overhead as a function of
the design parameters. We also present an automated tool flow
that provides a rapid and vendor-independent mapping of the
high level compute kernel code to the proposed overlay. The
main contributions in this paper can be summarized as:

• Design space exploration of linear overlay architectures
by modeling programmability overhead

• A parameterized and area efficient RTL implementation
of DeCO, a DSP-based efficient Compute Overlay, which
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can operate at near to the DSP block theoretical maximum
frequency

• An automated tool flow that takes a C description of a
compute kernel and maps it to the proposed overlay by
performing graph optimizations such as rebalancing, node
merging and architecture aware rescheduling

• A quantitative performance comparison of DeCO against
island-style overlays

The remainder of this paper is organized as follows: Sec-
tion II presents interconnect architecture analysis including
programmability overhead modeling and benchmark-set spe-
cific overlay design. In Section III, we present the architecture
of the DeCO overlay. Section IV presents our automated map-
ping flow. In Section V, we present experiments that evaluate
the overlay architecture and mapping tool. We conclude in
Section VI and discuss our future work.

II. INTERCONNECT ARCHITECTURE ANALYSIS

A linear interconnect architecture, consisting of a one-
dimensional array of programmable homogeneous tiles where
each tile contains a programmable routing network and a
cluster of DSP block based FUs and data forwarding (DF)
links is shown in Fig. 1. The DF links are required in each
cluster to allow bypassing of the current tile, and thus they
have a latency equivalent to that of the DSP block based FUs.
The resource requirement should be significantly reduced from
that of an island-style or nearest-neighbor architecture as the
routing network is only required in one direction between FU
stages. Additionally, the FU array is a simple, strictly balanced,
pipelined structure with no feedback, and hence does not
require any delay balancing or reordering logic which are re-
quired in the case of an island-style architecture. For example,
the overlay in [10] requires reordering logic, synchronization
logic, and routing network logic that consumes 6, 8 and 10
LUTs/bit/tile, respectively, to support connectivity between
the DSP block based FUs. This represents a programmability
overhead of 384 LUTs/FU for a 16-bit FU. However, in
modern Xilinx fabrics there are 4 DSP blocks for every 10×16
slices, equivalent to 640 LUTs, resulting in a LUT/DSP ratio
of 160.

An overlay architecture should ideally target an interconnect
network with a programmability overhead of less than 160
LUTs/FU, so as to get the most out of the available FPGA
resources, particularly the DSP blocks. To achieve this, we
propose further customizing the number of FUs, DF links and
the complexity of the routing network in each tile according
to the set of compute kernels. This is similar to datapath
merging [13] except that we only merge computation blocks
of sequenced DFGs in a stage-wise manner, leaving a fully
flexible interconnect between stages, hence retaining signifi-
cant flexibility. This allows us to handle unknown DFGs, so
long as the DFG can be scheduled on the merged datapath.

A. Programmability Overhead Modeling

For each tile, the number of DSP blocks, delay lines, and
routing network complexity can be decided based on a set of
compute kernels. The complexity of the routing network in the
nth tile depends on the resources in the nth tile and (n+1)th

Tile-1

Programmable Routing Network

DFs DSP DSPDSP

Programmable Routing Network

DFs DSP DSPDSP
Tile-2

DFs DSP DSPDSP
Tile-N

Data inputs

Data outputs

Fig. 1: Block diagram of linear dataflow overlay.

tile, that is the number of DSP blocks and delay lines. The
routing network can then be designed using an (Xn + Yn) ×
(I ∗ Xn+1 + Yn+1) crossbar switch, where I is the number
of FU inputs. The 16-bit version has 4 inputs as it is able to
utilise the pre-adder in the DSP block, while the 32-bit version
has 3 inputs as it cannot. Xn and Yn are the number of DSP
blocks and delay lines in nth tile and Xn+1 and Yn+1 are the
number of DSP blocks and delay lines in (n+ 1)th tile.

If Ln is the number of LUTs/bit required to build an (Xn+
Yn):1 multiplexer, the programmability overhead (PO) of the
overlay network, in LUTs/bit, is:

PO =

N−1∑

n=1

(Ln ∗ (I ∗Xn+1 + Yn+1)), (1)

where N is the number of tiles in the overlay.
Given a set G of M sequenced DFGs, we refer to the

number of operation nodes in the nth stage as gmxn, the total
number of stages as Ngm, and the crossing edges as gmyn in
the mth DFG, Gm. We can then find Xn, Yn and N using:

Xn = max(g1xn, g2xn, ...gMxn) (2)

Yn = max(g1xn + g1yn, g2xn + g2yn, ...gMxn

+ gMyn)−max(g1xn, g2xn, ...gMxn) (3)

N = max(Ng1, Ng2, Ng3, ...NgM ) (4)

B. Set-Specific Overlay Design
We calculate the overlay design parameters and programma-

bility overhead using a subset of DFGs from [8], given in
Table I. The graph depth is the critical path length of the
graph, while the graph width is the maximum number of nodes
in one schedule time, both of which impact the ability to
efficiently map a kernel to the overlay. The average parallelism
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is the ratio of the total number of operations and the graph
depth. We note that many of these DFGs are poorly balanced,
so we firstly apply tree-balancing to all DFGs, which both
reduces graph depth and better shapes the DFG. Next we apply
DSP aware node merging [10], which better targets the DSP
block based FU, and lastly we apply rescheduling techniques,
possibly increasing the graph depth, which results in different
FU requirements at each stage. This results in a number of
different DFGs for the same benchmark, with different values
for the overlay design parameters (N , Xn, and Yn), resulting
in different POs.

For example, the original kmeans benchmark [8] is shown
in Fig. 2(a), and has a depth of 9 requiring 9 stages in a
linear overlay. The rebalanced graph is shown in Fig. 2(b),
and requires just 5 stages, with a significantly reduced latency.
One example of node merging and rescheduling using ASAP
scheduling is shown in Fig. 2(c) resulting in a reduced FU
count. It should be noted that we observe a higher PO
for the ALAP scheduled version, due to the additional DF
resource needed to forward input data to the 2nd stage. The 3
implementations shown in Fig. 2 result in a PO of 6.25, 4.75
and 4.3 LUTs/bit per FU, respectively. Thus, we would choose
DFG 3, the one with the smallest PO, as the candidate DFG
for the design process.
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Fig. 2: Applied transformations including graph balancing

and DSP aware node merging.

TABLE I: DFG characteristics of Benchmark set

Benchmark Characteristics (After transformation characteristics)

No. Name I/O graph op graph graph

nodes edges nodes depth width

1. fft 6/4 24(22) 10(8) 3(3) 4

2. kmeans 16/1 39(35) 23(19) 9(5) 8

3. mm 16/1 31(31) 15(15) 8(4) 8

4. spmv 16/2 30(30) 14(14) 4(3) 8

5. mri 11/2 24(21) 11(9) 6(5) 4

6. stencil 15/2 30(23) 14(8) 5(3) 6

We repeat this process for the remaining DFGs in the
benchmark set in Table I), to determine the best FU and DF
configuration to support all compute kernels in the bench-
mark set. This results in a structure with different resource
requirements in each scheduling stage, which we refer to as
a cone [12]. This cone consists of 20 DSP block based FUs
and four layers of connections networks, as shown in Fig. 3.

Cluster

Connection 
Network

Delay Line

Fig. 3: Design of the optimized cone.

III. DECO OVERLAY ARCHITECTURE

Building on the ideas presented in the previous sections
and the advantages of hard DSP macros for implementing
high speed processing elements, we use the Xilinx DSP48E1
primitive as a programmable FU in the proposed overlay
architecture. Unlike in other overlays from the literature [9],
[10], [18] the interconnect network in the proposed overlay
is very lightweight, enabling us to efficiently implement both
16-bit and 32-bit implementations. The overlay architecture of
the two designs is slightly different, due to the characteristics
of the DSP block. We also detail the physical mapping to the
FPGA fabric and the resource usage. To achieve this we use
Xilinx ISE 14.6 and a Verilog HDL description of the overlay
targeting the Xilinx Zynq XC7Z020.
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A. The 32-Bit Architecture

The Xilinx DSP48E1 primitive does not provide a full 32-bit
implementation, even though some internal signals are much
larger than 32-bits. The problem arises, because the pre-adder
is just 25 bits wide, while the multiplier is 25×18-bit. This can
be problematic for long integer multiplication, but is suitable
if all variables are restricted to the C language 32-bit int data
type. This is because the default conversion rules for the int
data type will truncate the result of an integer multiplication,
discarding the most significant part. To avoid possible overflow
with the 25-bit pre-adder, we choose not to use it, and instead
bypass the pre-adder. The resulting architecture, showing the
32 bit connection network and the 32-bit FU, which is able
to support the C language 32-bit int data type, is shown in
Fig. 4. In this case, the FU uses the multiplier, the ALU, the
three separate A, B and C ports for input data, and one output
port P, as shown in Fig. 4, and can be configured to support
various operations such as multiply-add, multiply-subtract, etc.
The actual DSP48E1 function is determined by a set of control
inputs that are wired to the ALUMODE, INMODE and
OPMODE configuration registers. The DSP48E1 primitive
is directly instantiated to provide total configuration control
and allowing us to achieve a high frequency.

The topmost routing layer of the 20 FU overlay, shown in
Fig. 3, requires connections to four FUs (with three inputs
each) and four DF delay lines (with a single input). Thus, for
full routing flexibility, the topmost routing network layer re-
quires 16 8:1 multiplexers. However, during the design process
we observed that there is no requirement for connectability
between the left and right regions in the top part of the cone,
and thus they do not need to be fully connected. Hence in the
top connection layer, we use two separate smaller connection
networks, each having 8 4:1 multiplexers. Similarly, in the
second layer, we again isolate the left and right regions,
allowing the use of 4:1 multiplexers. In the third connection
layer, we combine the signals from the left and right regions,
which now also only require 4:1 multiplexers. Thus, the
resulting 32-bit cone, shown in Fig. 3, consists of a top layer of
8 FUs followed by three identical clusters of 4 FUs and 2 DFs.
It has a total latency of 24 clock cycles with a theoretical PO
of 2.1 LUTs/bit per FU, which is 40% less than the equivalent
cone with full interconnect flexibility. Thus the theoretical
LUT/FU ratio for the proposed 32-bit overlay is 67.2, which
is well below the original target of 160 LUTs/FU.

B. Resource Usage for the 32-Bit Architecture

Each cluster consists of four FUs preceded by three in-
dividual 4:1 muxes at the input of each FU, and two DF
delay lines preceded by a 4:1 mux, as shown for the 16-
bit version in Fig. 6. The 32-bit FU requires one DSP block
and four additional registers at the DSP input ports (18-bit
register for B input, 25-bit register for A input, two 32-bit
registers for C input) for pipeline balancing (as shown in
Fig. 4), consuming 107 FFs. The 25-bit 2:1 multiplexer in
front of the A input port consumes 13 LUTs and allows us
to choose between 25 bits (for multiplication) and the 14
extra bits that need to be concatenated (for addition). Each
FU connection network requires three 4:1 multiplexers with

����

����	
���

���	
���

�

�

������

������

�

�

�

�
�

�

�������

�

�

�

� �

�

������
�

�������

�

�

 

!"#$�
%#&'��#
��(
�$)

Fig. 4: The 32-bit functional unit and interconnect switch.

registered outputs, consuming 96 LUTs and 89 FFs. The delay
line requires 32 LUTs (SRLs) and 32 FFs and the delay line
input selection logic requires 32 LUTs and 32 FFs. This results
in a total cluster resource consumption of 564 LUTs, 912 FFs
and 4 DSP blocks. The cluster configuration register includes
16 bits for configuring each DSP block, 2 bits for each mux
and 2 bits for delay line input selection logic. Hence, the
cluster configuration register consumes 92 FFs.

The post-place and route resource consumption of the 32-
bit cone is 2076 LUTs, 3984 FFs and 20 DSP blocks, and
it achieves a frequency of 395 MHz, which approaches the
theoretical limit for DSP blocks of 400 MHz on Zynq. For the
DSP block based FU, programming the FU settings requires
16 configuration bits while programming the routing network
requires 2 configuration bits per 4:1 multiplexer. Thus, the
entire routing network requires 84 bits for the 32-bit cone and
hence the entire cone can be reconfigured using just 404 bits
(50.5 Bytes) of configuration data.

C. The 16-Bit Architecture
The 16-bit FU is similar to the 32-bit FU, except that it

can now make use of the DSP block A input and the pre-
adder, allowing additional instructions such as add-multiply
and subtract-multiply-add. This results in the four input, one
output FU, shown in Fig. 5. As with the 32-bit version, the
DSP48E1 function is determined by a set of control inputs that
are wired to the ALUMODE, INMODE and OPMODE
configuration registers.
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Fig. 5: The 16-bit functional unit and interconnect switch.
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Because of the extra DSP block input (used by the pre-
adder), the topmost routing layer requires connections to four
FUs (with four inputs each) and four DF delay lines (with
a single input). Again, because we do not need full routing
flexibility, the topmost connection layer requires two sets of
10 4:1 multiplexers. Similar to the 32-bit version, we use
4:1 multiplexers in the other connection layers. The 16-bit
cone also has a total latency of 24 clock cycles with a
theoretical PO of 2.7 LUTs/bit per FU, which is again 40%
less than the equivalent cone with full interconnect flexibility.
The theoretical LUT/FU ratio for the proposed 16-bit overlay
is 43.2, which is again significantly below the original target
of 160 LUTs/FU.

D. Resource Usage for the 16-bit Architecture
In the 16-bit version of the cone, which also consists of three

tiles with eight FUs at the top layer, each cluster consists of
four FUs preceded by four individual 4:1 muxes at the input
of each FU, and two DF delay lines preceded by a 4:1 mux,
as shown in Fig. 6. The 16-bit FU requires one DSP block
and three additional 16-bit registers at the DSP input ports for
pipeline balancing (as shown in Fig. 5), consuming 48 FFs.
Each FU connection network requires four 4:1 multiplexers
with registered outputs, consuming 64 LUTs and 64 FFs,
while the delay line requires 16 LUTs (SRLs) and 16 FFs
and the delay line input selection logic requires 16 LUTs
and 16 FFs. This results in a total 16-bit cluster resource
consumption of 320 LUTs, 512 FFs and 4 DSP blocks. The
cluster configuration register includes 16 bits for each DSP
block configuration, 2 bits for each mux and 2 bits for delay
line input selection logic, resulting in a cluster configuration
register size of 100 FFs.

The post-place and route resource consumption of the 16-
bit cone is 1368 LUTs, 2348 FFs and 20 DSP blocks, and
it achieves a frequency of 395 MHz, which approaches the
DSP theoretical limit of 400 MHz on Zynq. The overlay was
subsequently mapped to a Xilinx Virtex-7 XC7VX690T-2 and
achieved a frequency of 645MHz.

For the DSP block based FU, programming the FU settings
requires 16 configuration bits while programming the routing
network requires 2 configuration bits per 4:1 multiplexer. Thus,
the entire routing network requires 108 bits for the 16-bit cone
and hence the entire cone can be reconfigured using just 428
bits (53.5 Bytes) of configuration data.

IV. MAPPING TOOL

The main advantage of using an overlay is that applica-
tion kernels can be mapped to it with software-like speed
and programmability. The design and implementation of the
overlay itself still relies on the conventional hardware design
flow using vendor tools, but because it is done offline once, it
does not impact subsequent application kernel implementation,
which has its own toolchain. Typically, high level application
kernels are mapped to device primitives, either directly in
the case of HLS or through an intermediary HDL, and then
vendor tools are used to generate a device specific bitstream.
For DeCO, we use an in-house automated mapping flow to
provide a rapid, vendor independent, mapping to the overlay.
The mapping process comprises DFG extraction from HLL
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Fig. 6: Architectural design of the 16-bit cluster consisting

of four functional units and two delay lines.

descriptions of compute kernels, graph balancing, DSP48E1
primitive aware node merging, architecture aware scheduling
of nodes onto the overlay, and finally, configuration generation.
Like software compilation, this mapping process is typically
done offline, with the resulting configurations loaded onto the
overlay in minimal time at runtime. The automated overlay
mapping flow is described in detail below.

A. C to DFG Conversion

The HLL C description of the compute kernel is transformed
to a DFG description. The DFG consists of nodes that rep-
resent operations and edges that represent the flow of data
between operations. A node executes in a pipelined manner,
and only produces an output when all of its inputs are ready,
as per the dataflow model of computation.

B. DFG Transformations

First, the DFG description is parsed and translated into a
balanced DFG, which both reduces the graph depth and better
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shapes the DFG to match the cone. Then, in order to reduce
the number of compute nodes, we merge multiple nodes based
on the capabilities of the DSP48E1 primitive, as discussed
previously. Lastly, architecture aware scheduling adjusts the
schedule in a resource aware manner to better utilise the
available resource in the overlay cone. This transformation
process is shown in Fig. 2(a) to Fig. 2(c).

C. Configuration Generation
The FU compute nodes and the graph edges are used

to determine the configuration data for the FUs and the
connection network, respectively. This configuration data can
then be used to set the programmable settings of the FU and
the routing network, implementing the kernel.

V. EXPERIMENTAL EVALUATION

The DeCO overlay is mapped to the Xilinx Zynq XC7Z020
using Xilinx ISE 14.6. We evaluate the performance of the
DeCO architecture and mapping tool, using a benchmark set
of compute kernels, which we then compare to other overlay
implementations mapped to the Zynq device.

A. 16-Bit Overlay Comparison and Analysis
For comparison purposes, we map the benchmark set onto

the proposed 16-bit overlay, and onto on a 5×5 modified
DySER overlay [9] (Overlay-I) and a 5×5 DSP block based
island-style overlay [10] (Overlay-II), both of which are 16-
bit architectures. While all the overlays have comparable
DSP usage (20, 25 and 25, respectively), the LUT and FF
requirement at (1368, 33875 and 11023) and (2348, 13390 and
10486), respectively, show a significant reduction for DeCO, as
shown in Fig. 7. This represents savings in LUT requirements
of 96% and 87%, compared to [9] and [10], respectively.
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Fig. 7: Comparison of overlay resources required for

implementing the benchmark set

As a second experiment, we compare the physical footprint
in terms of configuration tiles, operating frequency and con-
figuration time, of the proposed overlay with the two previous
overlays and the minimum partial reconfiguration (PR) region
which can house the RTL implementation (generated using
Vivado HLS 2013.2) of the benchmark set. The Zynq fabric
consists of 22 DSP tiles (each containing 10 DSP blocks) and
133 CLB tiles (each containing 50 CLBs), and reconfiguration
using PR must be done in a multiple of these tiles to be
fast [22]. The proposed overlay requires 2 DSP tiles and 6
CLB tiles. [9] requires 3 DSP tiles and 126 CLB tiles while

TABLE II: Experimental results for the comparison of

different implementations

Area Tiles Freq. Config. Config. Peak

(DSP/CLB) (DSP/CLB) (MHz) data (Bytes) time (us) GOPS

Overlay-I 25/6142 3/126 175 194.0 7.2 4.37

Overlay-II 25/2095 3/42 370 287.0 11.5 27.75

Proposed 20/258 2/6 395 53.5 2.0 23.70

PR region 10/150 1/3 249 49000.0 382.0 -

[10] requires 3 DSP tiles and 42 CLB tiles. We also include
a PR region which is big enough to accommodate the largest
benchmark in the set (kmeans), which requires 1 DSP tile and
3 CLB tiles. These results are presented in Table II and show
that the proposed overlay requires 2× CLB tiles compared to a
PR-based direct FPGA implementation of the compute kernels,
with [9] and [10] having a significantly higher requirement at
21× and 7×, respectively.

Perhaps more notable is the time required to change the
kernel context for the various implementations. The PR region
can be reconfigured entirely using 49 KBytes of configura-
tion data in 382 us using the Zynq PCAP controller, while
DeCO can be reconfigured entirely using just 53.5 Bytes of
configuration data in 2 us, representing a 190× improvement
in configuration time. The other overlays, while requiring a
longer configuration time than DeCO, are also significantly
better than PR. We calculate peak throughput of the overlays in
GOPS, as the product of overlay frequency and the maximum
number of arithmetic operations supported by the DSP blocks,
as show in Table II.

B. Mapping Compute Kernels onto DeCO
Fig. 8 shows the mapping of the largest benchmark (kmeans)

on to the proposed 16-bit overlay and onto [10]. The bench-
mark implementation on [10] results in an initial latency of 52
cycles while mapping the same benchmark on the proposed
cone-shaped overlay results in an initial latency of just 24
cycles.

Fig. 8: Mapping of kmeans on Overlay-II vs. DeCO.

To analyze the mapping flexibility and utilization of the
proposed overlay, we map additional kernels, taken from [10]
and [6]. Recall that the overlay was originally designed for
the kernels shown previously in Table I. Table III shows the
required number of cones, the percentage utilization of the
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FUs in a cone, and the achievable GOPS for each benchmark.
This shows that the DeCO architecture is able to efficiently
map kernels which are unknown at overlay design time.

TABLE III: Experimental results for mapping benchmarks

Benchmark Required Cones % Utilization GOPS

fft 1 40% 3.95

kmeans 1 95% 9.08

mm 1 75% 5.92

spmv 1 70% 5.53

mri 1 75% 4.34

stencil 1 80% 5.53

gradient [6] 0.5 90% 4.34

chebyshev 0.5 40% 2.76

sgfilter 1 50% 7.11

mibench 1 40% 5.13

bicg 3 50% 11.85

trmm 4.5 60% 21.33

syrk 4.5 80% 28.44

Table III shows FU utilizations of up to 95%. For small
kernels, with a utilization of less than 50%, such as gradient
and Chebyshev, we are able to improve utilization by map-
ping replicated versions of the kernels. For example, the FU
utilization for gradient on a single full cone is 45%, but by
mapping two instances of this kernel onto the proposed cone,
we can achieve an effective FU utilization of 90%. For some
of the compute kernels, such as FFT and Chebyshev, the FU
utilization is less because these kernels are not cone shaped
DFGs. FFT is wide while Chebyshev is narrow. Using a single
cone, we are able to achieve a throughput of up to 9.08 GOPS
(38% of the peak throughput).

To map larger kernels, multiple instances of the overlay cone
are used. The last three rows of Table III show the mapping of
larger benchmarks to replicated instances of the cone, allowing
us to achieve high GOPS. Cones are replicated in a multi-lane
pattern to reflect the shape of larger graphs.

VI. CONCLUSION AND FUTURE WORK

We have presented DeCO, a DSP block based cone-
shaped FPGA accelerator overlay architecture that uses Xil-
inx DSP48E1 primitives as a programmable FU. DeCO is
area-efficient, with low overhead interconnect and supports
pipelined execution of compute kernels at high throughputs.
We observe 96% and 87% savings in LUT requirements com-
pared to other overlays from the literature. When implemented
on a Xilinx Zynq, DeCO achieves a frequency of 395 MHz and
when implemented on a Xilinx Virtex-7 device it achieved a
frequency of 645 MHz, both of which are close to the DSP
block theoretical limits on those respective architectures. In the
future, we plan to explore embedding the proposed overlay
within a heterogeneous platform where it can be used as a
rapidly reconfigurable general purpose accelerator.
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