
A Time-Multiplexed FPGA Overlay

with Linear Interconnect

Xiangwei Li∗, Abhishek Kumar Jain†, Douglas L. Maskell∗ and Suhaib A. Fahmy‡

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore
†Lawrence Livermore National Laboratory, United States

‡School of Engineering, University of Warwick, United Kingdom
∗{xli045, asdouglas}@ntu.edu.sg †jain7@llnl.gov ‡s.fahmy@warwick.ac.uk

Abstract—Coarse-grained overlays improve FPGA design pro-
ductivity by providing fast compilation and software like pro-
grammability. Soft processor based overlays with well-defined
ISAs are attractive to application developers due to their ease
of use. However, these overlays have significant FPGA resource
overheads. Time multiplexed (TM) CGRA-like overlays represent
an interesting alternative as they are able to change their behavior
on a cycle by cycle basis while the compute kernel executes. This
reduces the FPGA resource needed, but at the cost of a higher
initiation interval (II) and hence reduced throughput.

The fully flexible routing network of current CGRA-like
overlays results in high FPGA resource usage. However, many
application kernels are acyclic and can be implemented using a
much simpler linear feed-forward routing network. This paper
examines a DSP block based TM overlay with linear interconnect
where the overlay architecture takes account of the application
kernels’ characteristics and the underlying FPGA architecture, so
as to minimize the II and the FPGA resource usage. We examine
a number of architectural extensions to the DSP block based
functional unit to improve the II, throughput and latency. The
results show an average 70% reduction in II, with corresponding
improvements in throughput and latency.

Keywords-Reconfigurable system, overlay architecture, FPGA

I. INTRODUCTION

There has been a resurgence in FPGA-based accelerators

due to developments in the cloud computing and IoT domains.

FPGA accelerators are often custom designed to achieve max-

imum performance, using conventional RTL hardware design

techniques, and as such, are only applied to specific algorithms

in specific applications, and hence are fixed, negating many of

the benefits of the programmable FPGA device. This design

process is long and complex, requiring low-level device ex-

pertise and special knowledge of both hardware and software

systems, resulting in major design productivity issues and long

compilation times, which limit the mainstream adoption of

FPGA based accelerators for general purpose computing.

High-level synthesis (HLS) has been widely adopted by

EDA tool vendors to address the design productivity issue.

However, to maximize performance, detailed low-level design

effort is often still required, making design difficult for non-

experts. Additionally, while HLS tools have allowed designers

to focus on high-level functionality instead of low-level details,

the back-end flow (specifically the FPGA place and route)

requires very long compilation times, particularly for large

designs, contributing to the lack of productivity and main-

stream adoption of FPGAs. In many cases, the time required

to change an FPGA configuration limits hardware accelerators

to predesigned static (i.e. fixed) implementations, negating

the fundamental benefit of FPGAs. To be more appealing to

the broader group of application developers, who are used to

software API abstractions and fast development cycles, the

FPGA hardware resource needs to be better abstracted.

One possible solution to this problem is to use an overlay

(a programmable coarse-grained hardware abstraction layer on

top of the FPGA fabric) as this simplifies both the hardware

design and mapping process. This then allows the FPGA to be

treated as a virtualized execution platform that both abstracts

the hardware details and enables runtime management support,

so that the hardware can be viewed as just another software-

managed task, possibly even controlled by the OS or a

hypervisor [10]. This results in better application manage-

ment, and has the potential for allowing portability across

devices, software-like programmability by mapping from high-

level descriptions, better design reuse, fast compilation by

avoiding the complex FPGA design flow (particularly the

very slow place and route process), resulting in improved

design productivity. Another significant advantage is rapid

application swapping (a hardware context switch) as coarse-

grained overlay architectures have smaller configuration data

sizes than fine-grained FPGAs. The major problem is that

many of the current overlays are not efficient (in area, power,

throughput, etc.) and still require FPGA-like configuration

times, as in many cases the overlay needs to change when

the application requiring acceleration needs to change.

II. RELATED WORK

Overlays come in many forms, with the most common being

spatially configured [9], [6] and time multiplexed (TM) [24],

[16]. Spatially configured overlays fully unroll the kernel onto

a pipelined array of FUs, resulting in an initiation interval (II)

of 1. They provide high performance, but require significant

FPGA resources. TM overlays change their behavior on a cycle

by cycle basis, thus reducing the amount of FPGA resource

dedicated to the functional unit (FU) and interconnect, but at

the cost of a higher II and hence a reduced throughput.

Most successful TM overlays are based on soft proces-

sors. The more performance oriented ones include, SIMD

1075978-3-9819263-0-9/DATE18/ c©2018 EDAA

Octavo [13], VectorBlox MXP [24] and VLIW TILT [19]. A

massively parallel overlay, called GRVI Phalanx [7], based

on the RISC-V processor and the Hoplite NOC [11] mapped

1680 RISC-V cores onto an UltraScale+ VU9P. These overlays

have the advantage of a well-known, well-designed ISA which

makes them easy to use, however, they utilize a large amount

of FPGA resource and have a significant power consumption.

An alternative solution is to build arrays of customized TM

FUs and interconnect on the FPGA, similar to CGRAs [17].

A number of different interconnect styles for connecting

between FUs can be used, with the most common being: island

style [6], [8], nearest neighbor [20], [16] and to a lesser extent

linear interconnect [3], [9]. The overhead of the interconnect

network, particularly for island style and nearest neighbor

interconnects, contribute to a significant FPGA resource uti-

lization. Examples of CGRA-like TM overlays include:

CARBON [2], a CGRA-like overlay implemented as a 2×2

array of tiles on a Stratix III FPGA. Each CARBON tile has

an FU with a programmable ALU and instruction memory,

supporting up to 256 instructions. CARBON has a large FU

resource requirement with a relatively slow speed which limits

its scalability, compared to the overlays discussed below.

The SCGRA overlay [16] was proposed to address FPGA

design productivity issues. Application specific SCGRA over-

lays were implemented on Zynq [15], achieving a speedup of

up to 9× compared to the same application running on the

Zynq ARM processor. The 250 MHz FU consists of an ALU,

multiport data memory (256×32 bits) and customizable depth

instruction ROM (Supporting 72-bit instructions) resulting in

significant BRAM utilization. Fast application context switch-

ing is not possible as the full FPGA bitstream needs to be

reconfigured for a compute kernel change.

The reMORPH overlay [20] better targets the FPGA fabric,

with an FU consuming 1 DSP Block, 3 block RAMs, 196

LUTs and 41 registers. To reduce overhead, the reMORPH

FU does not use decoders resulting in a 72-bit instruction

memory (supporting up to 512 instructions) which also over

utilizes the BRAMs. reMORPH uses a nearest neighbor style

of non-programmable interconnect, which is adapted using

partial reconfiguration at runtime, and hence, suffers from the

same slow hardware context switch problem as SCGRA.

Many TM overlays have large area overheads due to the

routing resources, or large instruction storage requirements. To

address these problems, we propose a streaming architecture

based on feed-forward pipelined datapaths, as streaming based

accelerators have been highly successful when implemented in

FPGAs [18], [23]. Targeting highly compute intensive algo-

rithms with little control and relatively simple dependencies

allows us to use a linear interconnect structure, where data

flows in a single direction from one FU to the next, thus

minimizing the interconnect requirements. This structure then

enables the use of a very simple and efficient streaming

memory interface. The instruction storage is also reduced,

as the architecture allows us to store just those instructions

used by an individual FU. The reduced instruction and control

requirements means that a lightweight processor architecture

can be used, similar to the DSP based iDEA processor [4],

further reducing the hardware resource requirements while

achieving a relatively high operating frequency.

III. LINEAR TM OVERLAY

While overlays with a general-purpose mesh-based intercon-

nect allow for flexible communication between each FU, they

introduce a significant resource overhead associated with the

routing network. In many cases, a simple linear interconnect

structure can be used instead. In a TM overlay, this reduces

the highly flexible interconnect to a direct connection between

FUs, as in Fig. 1, and allows data flow graph (DFG) nodes

from the same scheduling time step to be allocated to individ-

ual FUs [14]. The linear overlay consists of a streaming data

interface made up of Distributed RAM (DRAM) acting as a

FIFO, which feeds the cascade of time-multiplexed FUs, with

another DRAM-based FIFO at the output. Tasks are scheduled

to the overlay using ASAP scheduling, with nodes at the same

(horizontal) level allocated to a single FU. For example, Fig. 2a

shows the medical imaging ‘gradient’ benchmark [5], while

Fig. 2b shows the resulting DFG. This example requires 4

FU stages, where the first stage contains 4 subtract operations

which would execute on the first FU, then the 4 multiplication

operations execute on the second FU, and so on.

The FU uses the same principle as the iDEA DSP-based

processor [4], and requires 1 DSP block, 160 LUTs and 293

FFs and runs at 325 MHz on a Xilinx Zynq XC7Z020. The

FU consists of a LUTRAM-based instruction memory (IM)

and register file (RF), and a DSP-based ALU, as shown in

Fig. 3 (excluding all of the logic in the four dashed boxes).

The major advantage of TM overlays is that an applica-

tion kernel can be mapped to fewer FUs, reducing resource

consumption at the expense of II. The example of Fig. 2b

can be mapped onto a linear overlay with 4 FUs using ASAP

scheduling and has an II of 11, consisting of 5 cycles for

data entry, 4 cycles for the 4 subtract operations, 1 cycle for

data output and 1 cycle to flush the pipeline. By comparison, a

spatially configured overlay would have an II of 1, requiring 11

FUs. However, using ASAP-based scheduling means that the

overlay has a depth equal to the critical path of the DFG, and

Time-multiplexed
Functional Unit

FIFO channel

Time-multiplexed
Functional Unit

Programmable
ALURegister File

Instruction
Memory

DSP Block

Time-multiplexed
Functional Unit

FIFO channel

Fig. 1: A linear TM overlay.

1076 Design, Automation And Test in Europe (DATE 2018)

(a) C Source Code

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

(b) Data Flow Graph

Fig. 2: The ‘gradient’ benchmark.

must be re-sized for each new application kernel, thus limiting

its usefulness. Whereas, a small linear overlay with a fixed

depth that is able to map larger more general purpose compute

kernels would be much more useful. In the next sections, we

examine mechanisms to increase the throughput and usability.

A. Architectural Enhancements

The II is a critical metric for determining the throughput

of an accelerator. The II of the overlay in [14] is obtained by

the maximum of the number of data load operations plus the

number of execution operations with 2 additional clock cycles

needed to flush the pipeline among the FUs, as in Equation 1.

This is especially large for DFGs with a large number of inputs

and operation nodes in the first scheduling stage.

II = max
FU

{#load+#op+ 2} (1)

1) Rotating Register File: The most obvious way to reduce

the II of Equation 1 is to overlap the loading of input data with

instruction execution. Instead of adding additional complexity

into the FU to support double-buffering, a rotating register

file [22] is used to support the overlap of data written into

the RF with subsequent instruction execution. The original

design of [14] used a RAM32M primitive with a dual port

configuration (1 read, 1 read/write), whereas the rotating RF

version requires a quad port configuration to support 2 reads

and 1 write. The new FU, shown in Fig. 3, includes the offset

counter but not the four shaded registers to the left of the

RAM32M RF block or the two shaded registers to the right

of the DSP block. This design requires 1 DSP block, 196

LUTs, 237 FFs and has a frequency of 334 MHz on a Zynq

XC7Z020 (610 MHz on a Virtex-7 VC707). We refer to this

new design as version 1 (V1), and the II is determined as:

IIV 1 = max
FU

{#load+ 1,#op+ 2} (2)

where the extra cycle in data load is to separate data blocks.

2) Replicating the Stream Datapath: The II can be reduced,

at the expense of an increased data bandwidth requirement, by

increasing parallelism. Replicating the data processing part of

the FU (shown within the right dash-dot box) and increasing

the data I/O to 64 bits doubles data throughput (halving the

II). This design which reuses the instruction memory and other

TABLE I: Comparison of different FU designs.

[14] V1 V2 V3 V4 V5

DSPs 1 1 2 1 1 1
LUTs 160 196 292 212 207 248
FFs 293 237 333 228 163 126
Fmax 325 334 335 323 254 182
IWP – – – 5 4 3

control circuitry of V1 is called version 2 (V2). It requires 2

DSP blocks, 292 LUTs and 333 FFs, operates at a frequency

of 335 MHz and has an II half that of Equation 2.

The resource consumption and maximum frequency for the

various FU designs on a Zynq XC7Z020 are listed in Table I.

The V1 FU consumes around 22% more LUTs than that

of [14], mainly due to the addition of the RAM32M primitive

and the offset counter. The resource consumption of V2 is less

than twice that of V1, with a similar frequency to V1.

3) FU Write-back: The main disadvantage with these over-

lays is that they are feed-forward only, and thus the overlay

depth (and the number of FUs) depends on the critical path

of the DFG. If output data is written back to the RF, multiple

nodes on the DFG critical path could be combined within

the same scheduling stage, thus reducing the overlay depth.

Without write-back, when the application kernel changes the

overlay also needs to change, requiring overlay reconfiguration

between kernels which significantly impacts the hardware

context switch time. Thus, a fixed architecture which is able

to handle a range of more general kernels would improve

execution time when multiple kernels need to be accelerated.

Introducing data write-back is relatively simple and involves

feeding the Data out signal back into the FU and multiplexing

it with the Data in signal, as shown in the lower left dashed

box in Fig. 3. This requires that the instruction format of [14]

be modified with two extra bits added, a write-back (WB) bit

and a no data forward (NDF) bit. Both bits are needed as there

is a possibility that the output data will be written back to the

RF and bypassed to the next FU stage. Rather than adding

two extra bits to the (already) 32-bit instruction, we note that

the DSP primitive is only used to support operations with 2

or 3 operands (which means the D port is unused and can be

disabled). This means that three bits of the DSP inmode field

can be hardwired, allowing the use of 1-bit as the WB flag,

1-bit as the NDF flag, with 1-bit reserved for future use. The

Valid in signal and the delayed WB flag are then used to select

between the two different data sources in the write-back logic.

Table I shows the resource utilization, operating frequency

and internal write-back path (IWP) for three different imple-

mentations of the FU with write-back, referred to as V3, V4

and V5. The V3 FU is identical to V1, except that the write-

back logic is added. That is, it includes all circuitry in Fig. 3

apart from the left and right shaded registers. The IWP is five,

comprising one cycle in the RF, one at the register between

the RF and the input map logic, and three in the DSP block.

This overlay operates at a frequency close to that of the non-

WB overlays. To reduce the IWP, the registers between the RF

Design, Automation And Test in Europe (DATE 2018) 1077

Data_in

Valid_in

Instruction Instruction

DSP Block

RAM32M
Register

File

D
C
D
C

Control
Generator

RAM32M
Instruction
Memory

Data_outM
Input Map

Logic

IC

Tag
Matching

40

32

1

40

32

1

8 32

1

1

5

5

32

55

5

21 21

1 1 4 7

51
11

+

+

PC

Offset
Counter

Valid_out

5

2

WB
Logic

0
NDF

WB
NDF

WB

Delay
Registers

Fig. 3: Proposed time-multiplexed functional unit.

RAM32M primitive and the input map logic can be deleted,

resulting in a slight frequency reduction. This FU, referred to

as V4, is identical to V3 except that all shaded registers in

Fig. 3 are removed. It has an IWP of 4 and a frequency of

254MHz. A further reduction in the IWP can be achieved by

reducing the pipeline depth of the DSP block from three to

two, resulting in an IWP of 3 and a frequency of 182MHz.

The V3-V5 FUs can then be implemented as a fixed depth

overlay, as in Fig. 1. We propose implementing two depth 8

overlays in a single tile, with replicated tiles connected via a

lightweight NOC, such as in [11]. The two overlays in a tile

could either be connected in series (to form a single depth 16

overlay) or connected in parallel to produce a depth 8 overlay

with dual datapaths, similar to the V2 based overlay.

As data forwarding within a DSP block is not possible, due

to the inability to access internal signals, it is important to

understand the impact of a fixed depth overlay when write-

back is used. When scheduling DFG nodes to the overlay,

any dependency between nodes will require the insertion of

NOPs, equal to the IWP, unless other non-dependant nodes

can be scheduled between the nodes with the dependency.

IV. COMPILING TO THE OVERLAY

There are two separate design processes for mapping an

application to an overlay. The first is the overlay implemen-

tation which is carried out offline using the conventional

FPGA design flow. At power-on, the bitstream (consisting of

the overlay, memory and communication interfaces, and any

other components) is used to configure the FPGA. The second

involves mapping the application kernel to the overlay. To

allow for fast vendor independent mapping to the overlay we

developed our own mapping tool flow. This involves, DFG

extraction from high-level compute kernels, scheduling the

DFG nodes onto the overlay, and finally, instruction generation

for each FU. This is typically done offline, however it could

also be performed as part of a just-in-time mapping strategy.

On Zynq, the ARM processor loads the kernel configuration

into the overlay pipeline and initiates kernel execution. Our

mapping flow is described below using the previous example.

Kernel Mapping: The HercuLeS HLS tool [12] is used

to transform a ‘C’ description of the compute kernel to a

DFG description, where nodes represent operations and edges

TABLE II: First 32 cycles of the ‘gradient’ schedule (II=6).

cyc FU0 FU1 FU2 FU4

1 Load R0
2 Load R1
3 Load R2
4 Load R3
5 Load R4
6 SUB (R0 R2)
7 Load R0 SUB (R1 R2)
8 Load R1 SUB (R2 R3)
9 Load R2 SUB (R2 R4) Load R0
10 Load R3 Load R1
11 Load R4 Load R2
12 SUB (R0 R2) Load R3
13 Load R0 SUB (R1 R2) SQR (R0 R0)
14 Load R1 SUB (R2 R3) SQR (R1 R1)
15 Load R2 SUB (R2 R4) Load R0 SQR (R2 R2)
16 Load R3 Load R1 SQR (R3 R3) Load R0
17 Load R4 Load R2 Load R1
18 SUB (R0 R2) Load R3 Load R2
19 Load R0 SUB (R1 R2) SQR (R0 R0) Load R3
20 Load R1 SUB (R2 R3) SQR (R1 R1) ADD (R0 R1)
21 Load R2 SUB (R2 R4) Load R0 SQR (R2 R2) ADD (R2 R3)
22 Load R3 Load R1 SQR (R3 R3) Load R0
23 Load R4 Load R2 Load R1 Load R0
24 SUB (R0 R2) Load R3 Load R2 Load R1
25 Load R0 SUB (R1 R2) SQR (R0 R0) Load R3 ADD (R0 R1)
26 Load R1 SUB (R2 R3) SQR (R1 R1) ADD (R0 R1)
27 Load R2 SUB (R2 R4) Load R0 SQR (R2 R2) ADD (R2 R3)
28 Load R3 Load R1 SQR (R3 R3) Load R0
29 Load R4 Load R2 Load R1 Load R0
30 SUB (R0 R2) Load R3 Load R2 Load R1
31 Load R0 SUB (R1 R2) SQR (R0 R0) Load R3 ADD (R0 R1)
32 Load R1 SUB (R2 R3) SQR (R1 R1) ADD (R0 R1)

represent data flow between operations, as shown in Fig. 2b.

For the V1 and V2 based overlays, ASAP scheduling is used

which results in no data dependencies between operations at

the same scheduling stage, as in [14], with nodes in each

scheduling stage then being allocated to a single V1 or V2

FU for execution. The set of instructions from the sequenced

DFG is identified, then the cycle-by-cycle execution pattern

is formed which interleaves load/store and arithmetic/ALU

operations, as shown in Table II. For the ‘gradient’ benchmark,

the II is reduced from 11 (in [14]) to 6 (V1) or 3 (V2) with

the same ASAP scheduling. This translates to a throughput of

0.59 Giga-operations/s (GOPS) for the V1 based overlay with

a latency of 86.8 ns (1.11 GOPS and 92.4 ns for V2). Lastly

the 32-bit FU instructions are generated.

Typically, most of the existing CGRA architectures adopt

Modulo scheduling [21], or a derivative algorithm, to achieve

a minimum II. However, Modulo scheduling is based on

the assumption that each operation node is executed in 1

cycle and the transfer of data between two arbitrary FUs

completes in 1 cycle, which is not realistic for highly pipelined

architectures. Instead, for a fixed depth overlay we use an

iterative greedy scheduling strategy which groups DFG nodes

at each scheduling step into clusters and then adds DFG

1078 Design, Automation And Test in Europe (DATE 2018)

I4_N5 I2_N3

MUL_N12

MUL_N10

MUL_N28

MUL_N8

MUL_4_N20 MUL_6_N25 MUL_4_N17MUL_N13

MUL_N14 MUL_N15

MUL_N11 MUL_N16

MUL_N18

MUL_N19ADD_N30

ADD_N31

ADD_N32

ADD_N29

O0_N33

MUL_N21

MUL_N22

MUL_N23

MUL_N26

MUL_N27

MUL_N9

MUL_N24

I5_N6 I1_N2 I3_N4 I6_N7I0_N1

Fig. 4: Data flow graph of the ‘qspline’ benchmark.

nodes along the critical path from subsequent clusters, while

balancing the II across all clusters. The number of scheduling

clusters is equal to the overlay depth. Due to space constraints,

the scheduling algorithm will not be discussed further.

As an example of fixed depth overlay scheduling, consider

the ‘qspline’ benchmark, of Fig. 4. Here, the critical path is 8

and we map to a depth 4 overlay (4 FUs). Scheduling produces

the 4 instruction clusters shown in Fig. 4 (using red dashes).

NOPs (equal to IWP-1) must be added between dependant

instructions (DFG nodes) unless other non-dependant instruc-

tions can be scheduled in between. For example, in the first

(top) cluster, Node 17 is scheduled, followed by 13, 25, 9,

20, and 12, before 15 is scheduled. Hence, the dependency

between 17 and 15 is resolved and no NOPs are inserted.

Similarly for the 2nd cluster, scheduling as: 14, 26, 21, 10,

16, 11, 27, 22, resolves dependencies 14-11, 26-27, and 21-

22, for all overlay versions. In cluster three, scheduling as:

18, 24, 28, 23, 19, 30, 8, resolves all dependencies for the

V4 and V5 overlays, but not for the V3 overlay, which with

an IWP of 5 requires 4 operations between dependant nodes.

Hence, a single NOP must be added between 23 and 19 which

then resolves all 4 sets of dependant instructions. For the 4th

cluster, graph balancing is performed, and the two additions

scheduled, followed by IWP-1 NOPs before the final addition.

The consequences of a fixed depth overlay are an increase

in the II with a corresponding reduction in the throughput, but

with a significant reduction in the latency. For the ‘qspline’

benchmark, the V3 overlay has an II of 15, with a throughput

of 0.51 GOPS and a latency of 125 ns, while the V4 overlay

has an II of 14, a throughput of 0.43 GOPS and a latency of

148 ns. This compares to the depth 8 V1 overlay with an II

of 11, a throughput of 0.69 GOPS and a latency of 234ns.

V. EXPERIMENTAL EVALUATION

We compare the performance of our linear TM overlays

using a set of compute kernels from [8], [1], as shown in

Table III. The V1 (1 DSP, no WB), V2 (2 DSP, no WB), V3

(WB, IWP=5) and V4 (WB, IWP=4) overlays are compared

TABLE III: DFG characteristics of benchmark set.

Benchmark I/O #Ops Depth II
[14]

IIV 1 IIV 2 IIV 3 IIV 4

chebyshev 1/1 7 7 6 4 2 4 4
mibench 3/1 13 6 14 8 4 8 8
qspline 7/1 25 8 19 11 5.5 11 11
sgfilter 2/1 18 9 13 8 4 8 8
poly5 3/1 27 9 19 11 5.5 11 11
poly6 3/1 44 11 25 14 7 13 12
poly7 3/1 39 13 24 14 7 20 17
poly8 3/1 32 11 21 12 6 16 14

to the overlay in [14]. V1, V2 and the overlay in [14] have a

depth equal to the critical path, and are configured on a kernel

by kernel basis, while V3 and V4 have a fixed depth of eight.

All overlays are implemented on a Zynq XC7Z020.

The FPGA DSP and logic slice utilization, and operating

frequency, for different depth V1 and V2 overlays are shown

in Fig. 5 (V3 and V4 are not included in this figure as they

have a fixed depth). A depth 8 V1 overlay consumes 654 logic

slices and 8 DSP slices which represents less than 5% of the

logic and DSP resources on Zynq. The depth 8 V2 overlay

consumes 893 logic slices and 16 DSP blocks or less than 8%

of the Zynq resources. By comparison, the fixed depth (of 8)

V3 (and V4) overlay consumes 814 (817) logic slices, 8 (8)

DSP slices and operates at a frequency of 286MHz (233MHz).

The DFG characteristics (number of I/O, number of arith-

metic operations and graph depth) for the chosen benchmarks

and the II achieved when mapped to the various overlays are

shown in Table III. For the first three benchmarks, which have

a depth ≤ 8, ASAP scheduling is used to map to the V3 and

V4 overlays, and thus, the II is the same as for the V1 overlay.

The V1 (V2) overlay has an average 42% (71%) reduction in

the II, compared to [14]. The V3 (V4) overlay has an average

34% (40%) reduction in the II for the depth > 8 benchmarks.

Fig. 6 shows the throughput and latency of the different

overlays for the benchmarks given in Table III. In terms of

throughput, all overlays have a higher throughput than the

overlay of [14]. This is because interleaving data transfer with

execution reduces the II and hence improves throughput. The

two DSP V2 overlay has approximately twice the throughput

as the V1 overlay, but also requires twice the data bandwidth.

The size of both of these overlays is dependant on the depth

(critical path) of the application kernel’s DFG, and needs to be

reconfigured when the application kernel changes. A depth 8

2 4 6 8 10 12 14 16
0

500

1,000

1,500

2,000

N
u

m
b

er
o

f
lo

g
ic

sl
ic

es

Slices [14]

Slices (V1)

Slices (V2)

2 4 6 8 10 12 14 16
0

10

20

30

40

Overlay Size (Number of FUs)

N
u

m
b

er
o

f
D

S
P

b
lo

ck
s

Slices [14]

Slices (V1)

Slices (V2)

DSPs (V1), [14]

DSPs (V2)

(a) Resource Usage

2 4 6 8 10 12 14 16
260

280

300

320

340

Overlay Size (Number of FUs)

f
m

a
x

(M
H
z

)

[14]

V1

V2

(b) fmax Drop

Fig. 5: V1 and V2 overlay scalability on Zynq XC7Z020.

Design, Automation And Test in Europe (DATE 2018) 1079

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2
T

h
ro

u
g

h
p

u
t

(G
O

P
S

)
[14] V1 V2 V3 V4

1 2 3 4 5 6 7 8
0

200

400

L
at

en
cy

(n
s)

Fig. 6: Throughput and latency for the benchmarks.

V1 (V2) overlay requires a minimum reconfigurable region of

7 (9) CLB tiles and 1 (2) DSP tile with a configuration time of

0.73 (1.02) ms using the processor configuration access port

(PCAP). Additionally, the overlays require a further 0.29μs to

load the configuration data for the largest benchmark.

The single DSP V3 overlay has a throughput similar to the

V1 overlay, with an average reduction of just 10%. The V4

overlay has a slightly reduced throughput as it operates at a

lower frequency due to the removal of pipeline registers to

reduce the IWP. The V3 and V4 overlays both have a fixed

depth (in these experiments a depth of 8 is used). Adding

write-back capabilities allows larger kernels to be mapped

to a smaller number of FUs, removing the requirement that

the overlay depth must be the same as the kernel critical

path. This eliminates the need to reconfigure the overlay

when the application kernel changes, making the overlay more

general purpose (but requiring a different scheduling strategy).

Thus, a hardware context switch on the V3 overlay requires

just 0.25μs for the largest benchmark, representing a 2900×
reduction compared to the V1 overlay.

The latency is heavily dependent on the depth of the overlay.

For the V1 and V2 overlays and the overlay of [14], the

overlay depth is equal to the DFG depth, due to the ASAP

scheduling strategy used, and hence these overlays all have

a larger latency. The V3 and V4 overlays generally show a

significant reduction in the latency, particularly for larger depth

DFGs, due to the fixed overlay depth.

VI. CONCLUSION

We have presented an area efficient FPGA overlay with a

linear connection of TM FUs based on the Xilinx DSP48E1.

Interleaving data transfer with instruction execution signifi-

cantly reduces the II with a resulting increase in throughput.

Introducing write-back into the FU design allows the overlay

depth to be fixed. This eliminates the need to reconfigure the

overlay if the application kernel changes, making the overlay

more general. These changes significantly reduce the latency

with just a small decrease in throughput. The V3 overlay has

the best performance, as for a fixed data bandwidth, it has

comparable throughput with a significantly reduced latency.

REFERENCES

[1] D. Bini and B. Mourrain. Polynomial test suite, 1996. http://www-sop.
inria.fr/saga/POL/.

[2] A. D. Brant. Coarse and fine grain programmable overlay architectures
for FPGAs. PhD thesis, University of British Columbia, 2013.

[3] D. Capalija and T. S. Abdelrahman. Towards synthesis-free JIT compi-
lation to commodity FPGAs. In Proc. FCCM, pages 202–205, 2011.

[4] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell. The iDEA DSP
block-based soft processor for FPGAs. ACM TRETS, 7(3):19:1–19:23,
2014.

[5] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. A fully pipelined and
dynamically composable architecture of CGRA. In Proc. FCCM, pages
9–16, 2014.

[6] J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for cir-
cuit portability and fast placement and routing. In Proc. CODES+ISSS,
pages 13–22, 2010.

[7] J. Gray. Grvi phalanx: A massively parallel RISC-V FPGA accelerator
accelerator. In Proc. FCCM, pages 17–20, 2016.

[8] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture
based on DSP blocks. In Proc. FCCM, pages 25–28, 2015.

[9] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. Deco:
A DSP block based FPGA accelerator overlay with low overhead
interconnect. In Proc. FCCM, pages 1–8, 2016.

[10] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell.
Virtualized execution and management of hardware tasks on a hybrid
ARM-FPGA platform. J. Signal Process. Syst., 77(1-2):61–76, 2014.

[11] N. Kapre and J. Gray. Hoplite: Building austere overlay NoCs for
FPGAs. In Proc. FPL, pages 1–8, 2015.

[12] N. Kavvadias and K. Masselos. Hardware design space exploration using
HercuLeS HLS. In Proc. PCI, pages 195–202, 2013.

[13] C. E. Laforest and J. H. Anderson. Microarchitectural comparison of the
MXP and Octavo soft-processor FPGA overlays. ACM TRETS, 10(3):19,
2017.

[14] X. Li, A. Jain, D. Maskell, and S. A. Fahmy. An area-efficient FPGA
overlay using DSP block based time-multiplexed functional units. In
Proc. OLAF, 2016.

[15] C. Liu, H.-C. Ng, and H. K.-H. So. QuickDough: a rapid FPGA loop
accelerator design framework using soft CGRA overlay. In Proc. FPT,
pages 56–63, 2015.

[16] C. Liu, C. L. Yu, and H. K.-H. So. A soft coarse-grained reconfig-
urable array based high-level synthesis methodology: Promoting design
productivity and exploring extreme FPGA frequency. In Proc. FCCM,
pages 228–228, 2013.

[17] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix. In Proc. FPL, pages 61–70. 2003.

[18] T. F. Oliver, B. Schmidt, and D. L. Maskell. Reconfigurable architectures
for bio-sequence database scanning on FPGAs. IEEE Trans. Circuits

Syst. II, Exp. Briefs, 52(12):851–855, 2005.

[19] K. Ovtcharov, I. Tili, and J. G. Steffan. TILT: a multithreaded VLIW
soft processor family. In Proc. FPL, pages 1–4, 2013.

[20] K. Paul, C. Dash, and M. S. Moghaddam. reMORPH: a runtime
reconfigurable architecture. In Proc. DSD, pages 26–33, 2012.

[21] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proc. MICRO, pages 63–74, 1994.

[22] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker. Register
allocation for software pipelined loops. ACM SIGPLAN Notices,
27(7):283–299, 1992.

[23] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis. Pipelined
decision tree classification accelerator implementation in FPGA (DT-
CAIF). IEEE Trans. Comput, 64(1):280–285, 2015.

[24] A. Severance and G. G. Lemieux. Embedded supercomputing in FPGAs
with the VectorBlox MXP matrix processor. In Proc. CODES+ISSS,
pages 1–10, 2013.

1080 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

