
A Time-Multiplexed FPGA Overlay
with Linear Interconnect

Xiangwei Li, Douglas L. Maskell
School of Computer
Science and Engineering
Nanyang Technological University

Suhaib A. Fahmy,
School of Engineering
University of Warwick

Abhishek K. Jain,
Lawrence Livermore
National Laboratory

Problems
• Low level of abstraction

§ Register-transfer level (RTL) design
• Complexity of SoC design

§ CPU, GPU, hardware, OS support, interfacing…
• Lengthy hardware compilation time

§ Fine-grained level placement and route

Design Productivity of Modern FPGAs

21-Mar-18 Xiangwei Li / NTU 1

Solutions
• High-level Synthesis (HLS)

§ SoC design is still difficult
§ Long compilation time

• SoC EDA Tools
§ Long compilation time

• Coarse-grained FPGA Overlays
§ Could be included as a processing technology into the

SoC EDA tools

Design Productivity of Modern FPGAs

21-Mar-18 Xiangwei Li / NTU 2

• A programmable coarse-grained
hardware abstraction layer,
implemented on top of an FPGA.

• Advantages
§ A higher level of abstraction
§ Software-like programmability
§ Fast compilation

• Typical overlays
§ Soft processors
§ Soft GPUs
§ Vector processors
§ CGRA-like overlays

Coarse-grained FPGA Overlays

21-Mar-18 Xiangwei Li / NTU 3

Processor-based

Consist of an array of processing
elements connected by a routing
network (such as NN, IS)
• They are throughput oriented with an II of 1
• No sharing of FUs among multiple operations

§ to achieve high throughput
• Resource hungry due to FU requirement for each

operation and the connection network
§ Examples: IF [1], DySER [2], DSP based

Overlay [3], DeCO [4]

• Can we share FUs to reduce area requirements
§ Possibly at the cost of reduced throughput?

CGRA-like: Spatially Configured Overlays

21-Mar-18 Xiangwei Li / NTU 4

DySER Overlay

CB

SB CB

Functional Unit

Vertical Channel

Ho
riz

on
ta

l C
ha

nn
el

Island-style DSP based Overlay

Many different configurations
• Processor arrays

§ NoC based
§ High performance
§ Significant area overhead
§ Examples: GRVI Phalanx [5],

120-core MIPS Overlay [6]
• Medium-grained overlays

§ NN or Island-style
§ Moderate performance
§ Lower area consumption
§ Examples: SCGRA Overlay [7],

reMORPH [8]

CGRA-like: Time-Multiplexed Overlays

21-Mar-18 Xiangwei Li / NTU 5

GRVI Phalanx

Reduced FU requirements, but at the
expense of II, and hence throughput
• Still use considerable FPGA resource

§ Interconnect
§ BRAMs

Some examples
• 5x5 SCGRA can fit on Zynq-7020

§ Limited scalability due to instruction
storage requirement

§ Need to store completely unrolled
instruction stream in BRAMs

• reMORPH: Another similar overlay
§ Same problem of instruction storage
§ FU not really FPGA architecture friendly

• So, can we reduce the FPGA hardware
requirements further?

CGRA-like Medium-grained Overlays

21-Mar-18 Xiangwei Li / NTU 6

SCGRA overlay

A Linear TM Overlay [9]

21-Mar-18 Xiangwei Li / NTU 7

No need for switch box
and connection box
§ Compared to a

conventional array-
based overlay.

Uses RAM32M primitives for the instruction memory and register file instead of BRAMs.
FU = 1 DSP + 160 LUTs + 293 FFs, and achieves up to 325 MHz on Zynq and 600 MHz on V7.

Mapping to the Linear TM Overlay

21-Mar-18 Xiangwei Li / NTU 8

Time-multiplexed
Functional Unit

FIFO channel

Time-multiplexed
Functional Unit

Time-multiplexed
Functional Unit

FIFO channel

ASAP scheduling was used where each stage is mapped to a FU in the overlay.

The compute efficiency is relatively low
• Initiation interval is large: Low throughput (~10% of Vivado HLS)

§ Due to the non-overlap of data load and execution
ØAdd a rotating register file
ØReplicate the streaming datapath (Reuse the IM)

• And it can only handle feed-forward DFGs. Also, the size (depth) of overlay
varies with application
§ Change the FU mapping by adding write-back support

Limitations of the Linear TM Overlay

21-Mar-18 Xiangwei Li / NTU 9

0.33 1.3

8.5

0
1
2
3
4
5
6
7
8
9

Linear TM
Overlay [9]

DSP based
Overlay [3]

Vivado HLS

MOPS/eSlice

Rotating Register File

21-Mar-18 Xiangwei Li / NTU 10

With rotating register files, it is possible to execute the arithmetic operations
and load/store new set of input data simultaneously when there is no conflict.

• Rotating Register File

Architecture Enhancement (V1)

21-Mar-18 Xiangwei Li / NTU 11

DSP Block

RAM32M
Register

File

D
C
D
C

Control
Generator

RAM32M
Instruction
Memory

Data

Valid

DataM
Input Map

Logic

Instruction Instruction

IC

Tag
Matching

40

32

1

40

32

1

8 32

1

1

5

5

32

55

5

21 21

1 1 4 7

5
1

11

+

+

PC

Offset
Counter

Valid

5

V1 implementation: 1 FU = 1 DSP + 196 LUTs + 237 FFs

(22.5% more LUTS and 19.1% less FFs than [9])

Running at 334 MHz on Zynq (2.8% higher than [9])

Original Instruction Scheduling [9]

21-Mar-18 Xiangwei Li / NTU 12

Initiation interval (II) = 11. Latency =32.

Instruction Scheduling

21-Mar-18 Xiangwei Li / NTU 13

Initiation interval (II) reduces from 11 to 6.
Latency drops from 32 to 28.

V1 Implementation: Rotating Register File

Replicating the Stream Datapath

21-Mar-18 Xiangwei Li / NTU 14

DRAM Controller

Offchip DRAM

 ARM Cortex-A9
Memory

Subsystem

A
XI

 A
CP Programmable Logic

A
XI

 H
P

Streaming I/O Interfaces

FIFO

FU

FU

FIFO

FU

FIFO

FU

FU

FIFO

FU

FIFO

FU

FU

FIFO

FU

Static Region

PR Region Time-multiplexed
Functional Unit

FIFO channel

Time-multiplexed
Functional Unit

Programmable
ALURegister File

Instruction
Memory

DSP Block

Time-multiplexed
Functional Unit

FIFO channel

Replicating the data processing part of the FU and increasing the data I/O to 64-bit can further

reduce the II into half, while the IM and other control circuitry are reused at runtime.

• Replicating the Stream Datapath

Architecture Enhancement (V2)

21-Mar-18 Xiangwei Li / NTU 15

DSP Block

RAM32M
Register

File

D
C
D
C

Control
Generator

RAM32M
Instruction
Memory

Data

Valid

DataM
Input Map

Logic

Instruction Instruction

IC

Tag
Matching

40

32

1

40

32

1

8 32

1

1

5

5

32

55

5

21 21

1 1 4 7

5
1

11

+

+

PC

Offset
Counter

Valid

5

V2 Implementation: 1 FU = 2 DSPs + 292 LUTs + 333 FFs
(49.0% more LUTS and 40.5% more FFs than V1)

Running at 335 MHz on Zynq (almost same as V1)

Overlay Scalability

21-Mar-18 Xiangwei Li / NTU 16

V1 overlay (depth=8) consumes less than 5% of the Zynq resources. Fmax =303 MHz
V2 overlay (depth=8) consumes less than 8% of the Zynq resources. Fmax = 287 MHz

DFG Characteristics

21-Mar-18 Xiangwei Li / NTU 17

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

SQR_N10

I0_N1 I1_N2 I2_N3 I3_N4 I4_N5

SUB_N6 SUB_N7 SUB_N8 SUB_N9

SQR_N11 SQR_N12 SQR_N13

ADD_N14 ADD_N15

ADD_N16

O0_N17

Feed-forward DFG Feedback DFG

Similar to [9], V1 and V2 can only handle feedforward DFGs.
When the DFG has inter dependences, FU write-back support is necessary.

Overlay Reconfiguration

21-Mar-18 Xiangwei Li / NTU 18

The overlay has to be reconfigured when the depth (critical path) of the DFG is changed.

To avoid frequent overlay reconfiguration, FU write-back should be introduced.

Pre-synthesized overlay library

I4_N5 I2_N3

MUL_N12

MUL_N10

MUL_N28

MUL_N8

MUL_4_N20 MUL_6_N25 MUL_4_N17MUL_N13

MUL_N14 MUL_N15

MUL_N11 MUL_N16

MUL_N18

MUL_N19ADD_N30

ADD_N31

ADD_N32

ADD_N29

O0_N33

MUL_N21

MUL_N22

MUL_N23

MUL_N26

MUL_N27

MUL_N9

MUL_N24

I5_N6 I1_N2 I3_N4 I6_N7I0_N1

Overlay Depth: 8 à 4

II: 11 à 15

• FU Write-back Support

Architecture Enhancement (V3-V5)

21-Mar-18 Xiangwei Li / NTU 19

V3 implementation: 1 FU = 1 DSP + 212 LUTs + 228 FFs
(8.2% more LUTS and 4.0% less FFs than V1)

Running at 323 MHz on Zynq (3.3% lower than V1)

Data_in
Valid_in

Instruction Instruction

DSP Block

RAM32M
Register

File

D
C
D
C

Control
Generator

RAM32M
Instruction
Memory

Data_outM
Input Map

Logic

IC

Tag
Matching

40

32

1

40

32

1

8 32

1

1

5

5

32

55

5

21 21

1 1 4 7

51
11

+

+

PC

Offset
Counter

Valid_out

5

2

WB
Logic

0
NDF

WB
NDF

WB

Delay
Registers

Summary of Area and Frequency

21-Mar-18 Xiangwei Li / NTU 20

Although V4 and V5 are able to further reduce the internal write-back path, the

clock frequencies drop significantly, especially for V5.

FU [9] FU (V1) FU (V2) FU (V3) FU (V4) FU (V5)

DSP 1 1 2 1 1 1

LUTs 160 196 292 212 207 248

FFs 293 237 333 228 163 126

Slices 81 57 104 107 84 107

Fmax on

Zynq

325 MHz 334 MHz 335 MHz 323 MHz 254 MHz 182 MHz

IWP -- -- -- 5 4 3

Write-back

support

No No No Yes Yes Yes

Rotating

register file

No Yes Yes Yes Yes Yes

Benchmark Evaluation (Throughput)

21-Mar-18 Xiangwei Li / NTU 21

As expected, the V1 II is around 60% of the original II. The V2 II is exactly
half of the V1 II. The V3 and V4 II are close to the V1 II.

Benchmark Evaluation (Efficiency)

21-Mar-18 Xiangwei Li / NTU 22

V1, V2, V3, and V4 achieve 66.7%, 93.7%, 48.5%, 27.3% better compute
efficiency compared to that of [9] on average, respectively.

Benchmark Evaluation (Latency)

21-Mar-18 Xiangwei Li / NTU 23

Adding write-back and fixing the overlay depth along with a better
scheduling strategy significantly reduces the latency.

• Presented an area efficient Overlay with linear interconnect

• Built using fully pipelined DSP blocks

• Architectural enhancement on the overlay

§ Rotating register file

§ Replicating the stream datapath

§ FU write-back support

• Along with a better instruction scheduling strategy

• Improvement (V3) compared to the Linear TM overlay [9]

§ 50.0% higher throughput in GOPS

§ 48.5% higher compute efficiency in MOPS/eSlice

§ 32.0% lower latency in ns

Conclusion

21-Mar-18 Xiangwei Li / NTU 24

1. J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for circuit portability and fast placement
and routing,” in Proc. Int. Conf. Hardware/Software Codesign and Syst. Synthesis (CODES+ISSS), 2010, pp.
13–22.

2. J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju, T. Nowatzki, and K. Sankaralingam, “Design,
integration and implementation of the DySER hardware accelerator into OpenSPARC,” in Proc. 18th Int.
Symp. High Performance Comput. Archit. (HPCA), 2012, pp. 1–12.

3. A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architecture based on DSP blocks,” in Proc. 23rd
Int. Symp. Field- Programmable Custom Comput. Mach. (FCCM), 2015, pp. 25–28.

4. A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy, “DeCO: a DSP block based FPGA accelerator
overlay with low overhead interconnect,” in Proc. 24th Int. Symp. Field-Programmable Custom Comput.
Mach. (FCCM), 2016, pp. 1–8.

5. J. Gray, “GRVI-Phalanx: A massively parallel RISC-V FPGA accelerator,” in Proc. 24th Int. Symp. Field-
Programmable Custom Comput. Mach. (FCCM), 2016, pp. 17–20.

6. C. Kumar HB, P. Ravi, G. Modi, and N. Kapre, “120-core microAptiv MIPS Overlay for the Terasic DE5-NET
FPGA board,” in Proc. 25th Int. Symp. Field Program. Gate Arrays (FPGA), 2017, pp. 141– 146.

7. C. Liu, H.-C. Ng, and H. K.-H. So, “QuickDough: a rapid FPGA loop accelerator design framework using soft
CGRA overlay,” in Proc. Int. Conf. Field-Programmable Technol. (FPT), 2015, pp. 56–63.

8. K. Paul, C. Dash, and M. S. Moghaddam, “remorph: a runtime reconfigurable architecture,” in Proc. 15th
Euromicro Conf. Digit. Syst. Design (DSD), 2012, pp. 26–33.

9. X. Li, A. Jain, D. Maskell, and S. A. Fahmy, “An area-efficient FPGA overlay using DSP block based time-
multiplexed functional units,” in Proc. 2nd Int. Workshop on Overlay Archit. for FPGAs (OLAF), 2016.

References

21-Mar-18 Xiangwei Li / NTU 25

21-Mar-18 Xiangwei Li / NTU 26

Thank you!

