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Problems
• Low level of abstraction

§ Register-transfer level (RTL) design
• Complexity of SoC design

§ CPU, GPU, hardware, OS support, interfacing…
• Lengthy hardware compilation time

§ Fine-grained level placement and route 
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Solutions
• High-level Synthesis (HLS)

§ SoC design is still difficult
§ Long compilation time

• SoC EDA Tools 
§ Long compilation time

• Coarse-grained FPGA Overlays
§ Could be included as a processing technology into the 

SoC EDA tools

Design Productivity of Modern FPGAs

21-Mar-18 Xiangwei Li / NTU 2



• A programmable coarse-grained 
hardware abstraction layer, 
implemented on top of an FPGA.

• Advantages
§ A higher level of abstraction
§ Software-like programmability
§ Fast compilation

• Typical overlays
§ Soft processors
§ Soft GPUs
§ Vector processors
§ CGRA-like overlays

Coarse-grained FPGA Overlays
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Processor-based



Consist of an array of processing 
elements connected by a routing 
network (such as NN, IS)
• They are throughput oriented with an II of 1
• No sharing of FUs among multiple operations

§ to achieve high throughput 
• Resource hungry due to FU requirement for each 

operation and the connection network
§ Examples: IF [1], DySER [2], DSP based 

Overlay [3], DeCO [4]

• Can we share FUs to reduce area requirements
§ Possibly at the cost of reduced throughput?

CGRA-like: Spatially Configured Overlays
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Many different configurations
• Processor arrays

§ NoC based
§ High performance 
§ Significant area overhead
§ Examples: GRVI Phalanx [5], 

120-core MIPS Overlay [6]
• Medium-grained overlays

§ NN or Island-style
§ Moderate performance
§ Lower area consumption
§ Examples: SCGRA Overlay [7], 

reMORPH [8]

CGRA-like: Time-Multiplexed Overlays
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GRVI Phalanx



Reduced FU requirements, but at the 
expense of II, and hence throughput
• Still use considerable FPGA resource

§ Interconnect
§ BRAMs

Some examples
• 5x5 SCGRA can fit on Zynq-7020

§ Limited scalability due to instruction 
storage requirement

§ Need to store completely unrolled 
instruction stream in BRAMs

• reMORPH: Another similar overlay
§ Same problem of instruction storage
§ FU not really FPGA architecture friendly

• So, can we reduce the FPGA hardware 
requirements further?

CGRA-like Medium-grained Overlays
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SCGRA overlay



A Linear TM Overlay [9]
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No need for switch box 
and connection box
§ Compared to a  

conventional array-
based overlay.

Uses RAM32M primitives for the instruction memory and register file instead of BRAMs.
FU = 1 DSP + 160 LUTs + 293 FFs, and achieves up to 325 MHz on Zynq and 600 MHz on V7.



Mapping to the Linear TM Overlay
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ASAP scheduling was used where each stage is mapped to a FU in the overlay. 



The compute efficiency is relatively low
• Initiation interval is large: Low throughput (~10% of Vivado HLS)

§ Due to the non-overlap of data load and execution
ØAdd a rotating register file
ØReplicate the streaming datapath (Reuse the IM) 

• And it can only handle feed-forward DFGs. Also, the size (depth) of overlay 
varies with application
§ Change the FU mapping by adding write-back support

Limitations of the Linear TM Overlay
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Rotating Register File
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With rotating register files, it is possible to execute the arithmetic operations 
and load/store new set of input data simultaneously when there is no conflict.  



• Rotating Register File

Architecture Enhancement (V1)
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V1 implementation: 1 FU = 1 DSP + 196 LUTs + 237 FFs 

(22.5% more LUTS and 19.1% less FFs than [9])

Running at 334 MHz on Zynq (2.8% higher than [9])



Original Instruction Scheduling [9]
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Initiation interval (II) = 11. Latency =32.



Instruction Scheduling
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Initiation interval (II) reduces from 11 to 6. 
Latency drops from 32 to 28.

V1 Implementation: Rotating Register File



Replicating the Stream Datapath
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Replicating the data processing part of the FU and increasing the data I/O to 64-bit can further 

reduce the II into half, while the IM and other control circuitry are reused at runtime.



• Replicating the Stream Datapath

Architecture Enhancement (V2)
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V2 Implementation: 1 FU = 2 DSPs + 292 LUTs + 333 FFs
(49.0% more LUTS and 40.5% more FFs than V1)

Running at 335 MHz on Zynq (almost same as V1)



Overlay Scalability
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V1 overlay (depth=8) consumes less than 5% of the Zynq resources. Fmax =303 MHz 
V2 overlay (depth=8) consumes less than 8% of the Zynq resources. Fmax = 287 MHz



DFG Characteristics
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Similar to [9], V1 and V2 can only handle feedforward DFGs.
When the DFG has inter dependences, FU write-back support is necessary.



Overlay Reconfiguration
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The overlay has to be reconfigured when the depth (critical path) of the DFG is changed. 

To avoid frequent overlay reconfiguration, FU write-back should be introduced.

Pre-synthesized overlay library
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• FU Write-back Support

Architecture Enhancement (V3-V5)
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V3 implementation: 1 FU = 1 DSP + 212 LUTs + 228 FFs
(8.2% more LUTS and 4.0% less FFs than V1)

Running at 323 MHz on Zynq (3.3% lower than V1)
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Summary of Area and Frequency
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Although V4 and V5 are able to further reduce the internal write-back path, the 

clock frequencies drop significantly, especially for V5.

FU [9] FU (V1) FU (V2) FU (V3) FU (V4) FU (V5)

DSP 1 1 2 1 1 1

LUTs 160 196 292 212 207 248

FFs 293 237 333 228 163 126

Slices 81 57 104 107 84 107

Fmax on 

Zynq

325 MHz 334 MHz 335 MHz 323 MHz 254 MHz 182 MHz 

IWP -- -- -- 5 4 3

Write-back 

support

No No No Yes Yes Yes

Rotating 

register file 

No Yes Yes Yes Yes Yes



Benchmark Evaluation (Throughput)
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As expected, the V1 II is around 60% of the original II. The V2 II is exactly 
half of the V1 II.  The V3 and V4 II are close to the V1 II.



Benchmark Evaluation (Efficiency)

21-Mar-18 Xiangwei Li / NTU 22

V1, V2, V3, and V4 achieve 66.7%, 93.7%, 48.5%, 27.3% better compute 
efficiency compared to that of [9] on average, respectively.



Benchmark Evaluation (Latency)
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Adding write-back and fixing the overlay depth along with a better 
scheduling strategy significantly reduces the latency.



• Presented an area efficient Overlay with linear interconnect

• Built using fully pipelined DSP blocks

• Architectural enhancement on the overlay

§ Rotating register file

§ Replicating the stream datapath

§ FU write-back support

• Along with a better instruction scheduling strategy

• Improvement (V3) compared to the Linear TM overlay [9]

§ 50.0% higher throughput in GOPS

§ 48.5% higher compute efficiency in MOPS/eSlice

§ 32.0% lower latency in ns

Conclusion
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Thank you!


