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Abstract—The hardware acceleration of compute intensive 

applications has definite advantages, particularly in terms of 

energy and application latency. Heterogeneous programmable 

system-on-chip (SoCs) FPGA devices, which combine general 

purpose processors with reconfigurable fabrics, provide a 

compelling platform for IoT applications. However, FPGA 

devices are constrained due to significant design productivity 

issues and a lack of suitable hardware abstraction. For FPGAs 

to compete as general purpose computing platforms they must 

be better virtualized, as eliminating the need to work with 

platform-specific details would make them more accessible to 

application developers who are accustomed to software API 

abstractions and fast development cycles. In this paper, we 

discuss the role of overlay architectures for enabling general 

purpose FPGA application acceleration. 

 

Keywords— FPGA, Overlay architecture 

I.  Introduction 
Many of today’s embedded applications, particularly in 

the internet of things (IoT) domain, require significant low-
power pre-processing. While some of this processing can be 
performed by low power processors, possibly with cloud 
offloading, more compute intensive applications, such as 
image pre-processing for real-time driver assistance, require 
a different approach. Heterogeneous programmable systems 
on chip (PSoC) platforms, which tightly couple general 
purpose CPUs with reconfigurable FPGA fabric [1], provide 
significantly better power/performance characteristics than 
high performance CPUs and/or GPUs, particularly within 
the tight power budget required by an embedded system. 

This reconfigurable computing approach is not new [2], 
[3], and while promising has had limited success in the past. 
However, the more capable multicore processors in newer 
PSoC devices provide the ability to move the focus away 
from static (or quasistatic) accelerators to a more software 
oriented view, where reconfiguration is a key enabler for 
reusing available hardware resources among multiple tasks. 
But this requires that the traditional approaches to managing 
the execution and scheduling of hardware tasks be re-
examined as they are generally inappropriate and 
cumbersome. In addition, the hardware design process is 
complex, requiring low-level device expertise and specialist 
knowledge of both hardware and software systems, resulting 
in major design productivity issues. 

This is because there is no suitable abstraction at the 
hardware  computing level  which  is able to  fully  eliminate  
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School of Computer Science and Engineering, NTU Singapore 

Singapore 

the reliance on platform-specific detail. The lack of platform 
abstraction and the resulting application portability is one of 
the main impediments to the adoption of these platforms for 
mainstream computing. Enabling the virtualized execution 
of software and hardware tasks on PSoC platforms would 
make them more accessible to application developers who 
are used to software API abstractions and fast development 
cycles. Hence we require a revised look at how to 
effectively exploit the key advantages of reconfigurable 
hardware while abstracting implementation details within a 
software-centric processor-based system. 

One possible solution is to treat the execution and 
management of software and hardware tasks in the same 
way, using an OS or hypervisor which treats the FPGA as 
just another software-managed task [4], [5]. This enables 
more shared use, while ensuring better isolation and 
predictability. Complete system run-time management, 
including FPGA configuration and inter-process data 
communication, has been implemented using a hypervisor 
[6] and within the Linux OS [7]. The programmable coarse-
grained hardware abstraction layer (or overlay) which is 
mapped to the FPGA, resulted in better application 
portability across devices, better design reuse, and rapid 
reconfiguration that is orders of magnitude faster than other 
reconfiguration approaches on FPGA.  

In this paper, we discuss an execution platform based on 
a virtual overlay sitting on top of the physical FPGA fabric 
of a commercial hybrid FPGA that not only abstracts the 
reconfigurable hardware details, such as the logic, memory, 
and I/O interfaces and their placement, but also provides 
runtime management support in order to facilitate 
virtualized execution of software and hardware tasks. This 
enables small, often used, sections of code to be mapped to 
dedicated hardware accelerators on demand.  

The remainder of the paper is organized as follows: 
Section II examines some of the barriers that must be 
overcome before non-hardware practitioners can fully 
embrace FPGA design. Section III introduces the concept of 
coarse-grained overlays followed by a description of the two 
main types of overlay. Section IV examines the use of 
FPGA overlay for general purpose application acceleration 
within a hybrid FPGA, while Section V examines the 
characteristics and implementation details of some typical 
overlays used for application acceleration. Finally, we 
conclude in Section VI.  

II. Barriers to Mainstream use 
of FPGAs 

To understand why FPGA devices have not achieved 
mainstream adoption among the wider computing 
community, it is important to appreciate the differences 
between FPGAs and alternative solutions, specifically 
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traditional CPUs. The most fundamental difference relates to 
how an application is mapped to these platforms. A CPU 
provides functionality to execute a compute kernel as a list 
of sequential instructions, whereas an FPGA architecture 
implements compute kernels by mapping them to fine 
grained resources, such as configurable logic blocks, and 
medium grained hard DSP blocks, Block RAMs, etc. These 
resources are connected via a fine-grained programmable 
routing network to create a specialized datapath which 
implements the compute kernel. By exploiting parallelism in 
the algorithm, significant performance gains are possible. 

A. Low Level Hardware Design 
The biggest difference between programmable hardware 

devices and other hardware implementations, such as ASIC 
devices, is that the former are user configurable, and in the 
case of SRAM-based FPGAs, dynamically reconfigurable. 
This allows the FPGA to adapt to changing processing 
requirements, thus better utilizing the FPGA resources, 
while providing a more software centric approach to 
hardware design. The typical flow starts with a large 
software application, which is profiled and partitioned into 
hardware and software components, with the resulting 
hardware accelerator running on the FPGA fabric and the 
remaining software running on the CPU. Significant 
performance improvements are possible due to hardware 
parallelization and pipelining even though the FPGA may 
run at a much slower clock speed than the CPU. 

The hardware accelerator is then typically designed at a 
low level of abstraction (register-transfer-level (RTL)) to 
achieve an efficient implementation. This can consume 
significant time and make design reuse difficult when 
compared to a similar software only design. The designer 
manually converts the compute kernel into a fully pipelined 
datapath, specified using a hardware description language 
(HDL) such as Verilog or VHDL. The detailed structure of 
the datapath and the control needed for reading inputs from 
memories into buffers, stalling the datapath when buffers are 
full or empty, writing outputs to memory, etc., must be 
defined. In FPGA, a datapath implementing just several 
lines of C code may require 2-3 orders of magnitude more 
lines of HDL code, but results in much better performance 
by pipelining and exploiting parallelism. However this 
performance comes at the cost of significant design effort. 

High-level  synthesis  (HLS)  has  been  widely  adopted  
by EDA  vendors  to  address  design  productivity. HLS has 
helped to raise the level of programming abstraction from 
RTL to high level languages, such as C or C++, allowing 
designers to focus on high-level functionality instead of low-
level details. However, low-level design effort is often still 
required to achieve the desired performance, making FPGA 
design difficult for non-experts. Also, while HLS tools have 
simplified the design process, the back-end flow 
(specifically the FPGA place and route) requires very long 
compilation times, particularly for large designs, further 
contributing to a lack of productivity and the main-stream 
adoption of FPGAs. In many cases, the time required to 
change an FPGA configuration limits hardware accelerators 
to predesigned static (fixed) implementations, negating the 
fundamental benefit of FPGAs.  

Additionally, FPGA designs do not necessarily port well 
to the next hardware generation, making reconfigurable 

systems more difficult to work with. The designer must 
make a number of decisions, such as how to best fit the 
application to the device, including the datapath structure 
and the amount of parallelism. Applications are normally 
optimized for a specific target device, and are unable to 
execute on a smaller device or cannot take full advantage of 
the additional resources on a larger device.  

B. Reconfiguration Latency 
As mentioned earlier, SRAM-based FPGAs are able to 

partially and dynamically reconfigure the functionality of 
the FPGA fabric. However, despite the popularity and 
inherent capability of FPGAs for partial reconfiguration, 
whereby the FPGA operation is dynamically adapted to 
changing application requirements, this feature is not well 
supported by FPGA vendors and is hampered by slow 
reconfiguration times, poor CAD tool support, and large 
configuration file sizes. These issues make dynamic 
reconfiguration difficult and inefficient, resulting in most 
FPGAs being used with just a single configuration. 

Dynamic partial reconfiguration (DPR) reduced the 
configuration time by allowing a smaller region of the 
FPGA fabric to be dynamically reconfigured at runtime. 
This provided a way of virtualizing the FPGA to allow the 
implementation of applications that are larger than the 
FPGA. DPR improved reconfiguration performance [8], 
however the efficiency of the traditional design approach for 
DPR is heavily impacted by how a design is partitioned and 
floor planned [9], tasks that again require FPGA expertise. 
Furthermore, the commonly used configuration mechanism 
is highly sub-optimal in terms of throughput [10]. Despite 
numerous efforts in reducing reconfiguration times and 
improving CAD tool support for dynamic reconfiguration of 
the FPGA fabric [11], [8], the implementation of rapidly 
reconfigurable hardware accelerators is still difficult and 
time consuming with application kernel swap times orders 
of magnitude more than that of a CPU context switch. 

III. Coarse-Grained Overlays 
Coarse-grained reconfigurable overlays implemented on 

top of a commercial FPGA devices, as shown in Fig. 1, have 
recently been explored as a means for addressing some of 
the problems seen with established FPGA-based hardware 
design. These overlays allow coarse-grained components, 
specifically the functional units (FUs) and interconnect to be 
modified at runtime according to application requirements. 
Coarse-grained overlays have several potential advantages, 
including: improved designer productivity, better design 
portability, software-like programming and fast application 
switching. This is because programs can be compiled to the 
overlay several orders of magnitude faster than that for the 
fine grained FPGA on which the overlay is implemented. 
That is, instead needing a full cycle through the FPGA 
vendor tools, overlay architectures present a simpler 
problem, that of programming an interconnected array of 
FUs. However, overlays are not intended to replace HLS 
tools and vendor implementation tools and are instead 
intended to support FPGA usage models where 
programmability, abstraction, resource sharing, fast 
compilation, and design productivity are critical issues. 
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Figure 1. A course-grained overlay on top of a fine-grained FPGA. 

Overlays come in many forms, with the majority falling 
within one of just two classes: spatially configured (SC) and 
time multiplexed (TM), with both the FU and interconnect 
also falling within one of these two categories. 

A. Spatially Configured Overlays 
SC overlays fully unroll the computational kernel and 

allocate each kernel operation to an individual FU such that 
an FU executes a single arithmetic operation and data is 
transferred over a dedicated point-to-point link between 
FUs. That is, both the FU and the interconnect are fixed 
while a compute kernel executes. Pipelining can then be 
used, both between and within FUs, to provide high 
throughput data computations which result in a fully 
pipelined, throughput oriented programmable datapath 
executing one kernel iteration per clock cycle. Thus an SC 
overlay has an initiation interval (II) of one. 

SC overlays are usually characterised by their 
interconnect type, with the most common being: island style 
(IS) [12], [13], nearest neighbour (NN) [14], and to a lesser 
extent linear interconnect [15], [16], [17]. However, many 
IS and NN connected overlays suffer from very high FPGA 
resource overheads due to the interconnect network 
complexity, and are unsuitable for large compute kernels 
due to the limited size of the overlay that can be mapped 
onto the FPGA fabric. However, SC overlays do have a 
number of advantages, such as the ability to exploit larger 
FPGAs to deliver scalable performance for data-parallel and 
throughput oriented applications. They are able to maintain 
extremely high throughput by employing deep pipelining 
within the architecture, as well as having drastically reduced 
compilation times and configuration data sizes due to the 
requirement for just one instruction per functional unit. But 
this flexibility comes at a cost in terms of area and 
performance overheads. Hence, a significant amount of 
research effort has recently been aimed at reducing area 
overheads and improving performance.  

B. Time-Multiplexed Overlays 
TM overlays, on the other hand, are able to change their 

behaviour at each clock cycle, thereby reusing the resources 
allocated to the FU and interconnect. However, this 
multiplexing of the resource leads to a higher II and hence a 
reduced throughput.  

Most successful TM overlays are based on soft 
processors, and include single-issue, multi-threaded and 
parallel  processors. Single-issue processors, such as Micro-
Blaze [18],  Nios II [19], RISC-V [20] and Leon-4 [21] 

provide the benefits of  software  programmability  and  
hardware  re-usage. However, compared to hard processors 
and dedicated FPGA accelerators, they have significantly 
worse power and performance characteristics and may not 
meet  the  requirements  of  high  speed  applications. To  
improve  power consumption and throughput, smaller and 
faster processor architectures, such as the iDEA processor 
[22], have been proposed. Examples of multi-threaded and  
parallel  processors include: CUSTARD [23], Octavo [24] 
and SIMD-Octavo [25], The VectorBlox  MXP soft vector 
processor [26] and the TILT VLIW processor [27].  

Current  processor-based overlay research  is  exploring  
multi-core  systems  of soft processors with efficient routing 
to improve processor throughput. Examples include GRVI 
Phalanx [28], a massively parallel overlay based on the 
RISC-V processor and the Hoplite NOC [29] which mapped 
1680 RISC-V cores onto an UltraScale+ VU9P, and the 120-
core microAptiv MIPS Overlay targeting the Stratix V GX 
FPGA [30]. These overlays have the advantage of a well-
known, well-designed ISA which makes them easy to use. 

An alternative solution is to build arrays of customized 
TM FUs and interconnect on the FPGA, similar to CGRAs 
[31]. As with SC overlays, array-based TM overlays mainly 
utilise IS [12], [13], NN [32], [33] and to a lesser extent 
linear interconnect [3], [9], for connecting between the TM 
FUs. Again, as with SC overlays, the overhead of the 
interconnect network, particularly for IS and NN 
interconnects, contribute to a significant FPGA resource 
utilization. Examples of CGRA-like TM overlays include: 
CARBON [34], reMORPH [32], SCGRA [33], the MINs 
Overlay [35] and a TM DSP-based overlay with linear 
interconnect [36]. Many of these overlays do not support 
fast application context switching as they rely on either full 
or partial reconfiguration at runtime when the compute 
kernel needs to change. 

CGRA-based overlays aimed at addressing FPGA design 
productivity have only appeared in the last 6 to 8 years, but  
have  already shown  potential  in terms of speed and area-
efficiency. This is likely to improve as more and more 
coarse-grained modules, such as DSP blocks and BRAMs, 
are fabricated in modern FPGAs. 

IV. Application Acceleration on 
FPGA Overlays 

These overlays can then be integrated into a complete 
system for application acceleration. In this section, we will 
examine two possible scenarios.  

Hypervisor Control: The first uses a modified 
CODEZERO hypervisor [5], [6] running on the host 
processor (in this case the dual-core ARM processor on the 
Xilinx Zynq FPGA) to provide run-time management, 
including overlay configuration and data communication, as 
in Fig. 2. This provides a significant advantage over 
conventional FPGA accelerators as it now allows the use of 
multiple independent accelerator kernels, which can be very 
quickly mapped to the overlay on demand, with software-
like context switch times, as the application runs. Due to the 
long FPGA configuration times, conventional FPGA 
accelerators usually require all accelerator cores to be 
present on the FPGA fabric. This results in the need for a 
large FPGA device, negating any power and cost advantages 
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associated with the use of these hardware accelerators. Even 
if using dynamic partial reconfiguration, the delay in 
swapping between accelerator implementations, is much too 
slow for many applications. 

Figure 2. The hypervisor based overlay on Zynq. 

The ARM-based hypervisor was able to support multiple 
hardware and software tasks running in different hypervisor 
containers. The FPGA bitstream describing the 5×5 overlay 
of [13], the four dual-port 512×64-bit input BRAMs, the 
single dual-port 512×64-bit output BRAM, the configuration 
buffer and an FPGA-based Xilinx softcore DMA engine 
connected to the 64-bit HP port, described in Fig. 2, are 
loaded (once only) at power-on as the hypervisor boots. The 
total configuration time is approximately 31ms. Multiple 
applications are then able to be scheduled to the overlay 
which has a configuration size of 287 Bytes (independent of 
the application kernel). The overlay is configured using the 
configuration buffer, via the GP port, and takes 11.5μs.  

The execution profile for tasks running on the overlay is 
shown in Fig. 3. In this case, the first kernel requires 20.5μs 
for input data transfer, while data processing takes 2μs and 
output data transfer takes a further 5.12μs. This data transfer 
process repeats until the task is finished or the kernel is 
preempted. Upon kernel preemption, the hypervisor unlocks 
the overlay, performs a hardware context switch and locks it 
for the next task, which takes 5.4μs (the worst case when the 
two applications are in containers which are both running on 
the same core). The hypervisor then schedules the second 
kernel to the overlay, which again requires 287 Bytes to be 
sent to the configuration buffer and takes 11.5μs. Here, the 
second kernel has an input data transfer which takes 10.25μs, 

while data processing takes 2μs and output data transfer 
takes 5.12μs. Again, the data transfer process repeats until 
the task is finished or the FFT kernel is preempted. 

From this simple example, it can be seen that the time to 
configure the overlay, perform a hardware context switch, 
and reconfigure the overlay for the next kernel is relatively 
insignificant (assuming that multiple data packets would be 
processed before a kernel pre-emption). However, this data 
transfer/process/transfer cycle reveals that the DMA based 
data transfer is a major bottleneck. This is using a relatively 
fast FPGA soft core DMA engine which is 4–5× faster than 
the ARM processor’s hard DMA. This transfer time could 
be improved by replicating DMA controllers and using all 
four HP ports, overlapping communication and computation, 
or by implementing a streaming interface directly to/from 
the FPGA using PCIe interfaces. However, the important 
point to take away is that the overlay is not the bottleneck, 
and is now able to adequately support general purpose 
hardware acceleration on FPGA. This has been achieved by 
removing the need for dynamic reconfiguration of the 
overlay (as is needed by many of the other overlays 
proposed in the literature).  

The PYNQ Project: Python productivity for Zynq 
(PYNQ) [37] is an open-source project which provides a 
simple platform independent method to design high 
performance embedded applications on the Zynq FPGA. It 
consists of API accessible reconfigurable libraries (or 
overlays) which are programmable using Python in a 
browser based Jupyter Notebook.  

PYNQ has been quickly adopted by the reconfigurable 
computing research community. A framework for SPARK 
execution on PYNQ has been proposed to accelerate 
machine learning, achieving up to a 11x speedup compared 
to the application running on just the ARM processor [38]. 
PYNQ was used to implement a deep recurrent neural 
network using the AXI Stream interface, which achieved a 
throughput of 20 Giga operations per second (GOPS) [39]. 
Dynamic partial reconfiguration of PYNQ overlays resulted 
in a 40% reduction in the resource consumption [40].  

V. Overlay Case Studies 
A number of different FPGA overlays developed by the 

research group which can be integrated into the hypervisor 
based ZYNQ system for supporting hardware application 
acceleration are described. 

DISO: A DSP block based Island-Style Overlay: An 
island-style overlay using Xilinx DSP48E1 primitives to 
implement a programmable FU in an efficient overlay 
architecture targeting data-parallel compute kernels was 
presented in [41]. The overlay consists of tiles and borders, 

 

 

Figure 3. The execution profile of tasks on overlay under hypervisor control. 



 

29 

 

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018 
                                       Copyright © Institute of Research Engineers and Doctors. All rights reserved.      
                                                ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12                                   

 
where a tile contains virtual routing resources and an FU, as 
shown in Fig. 4. The simple 2×2 overlay of Fig. 4, requires 4 

FUs, 9 SBs and 8 CBs. Extrapolating, an N×N overlay 
requires N

2
 FUs, (N +1)

2
 SBs and N

2
 +2N CBs. 

    (a) The 2x2 overlay  (b) The tile architecture 

Figure 4. The DISO overlay architecture. 

The 16-bit DSP-based FU consists of DSP block, MUX 
based reordering logic and variable length synchronization 
logic for balancing pipeline latencies, as shown in Fig. 5. 
The FU has 4 input and 4 output ports. The reordering logic 
is a mux-based 4x4 crossbar switch providing connectivity 
between the FU inputs and the DSP block. The variable 
length synchronization logic is implemented using SLICEM 
shift register LUTs (SRLs) for maximum performance.  

Figure 5. The DISO FU. 

The operating frequency, peak throughput and FPGA 
resource usage for different size overlays on the ZYNQ 
device are given in Fig. 6. DISO is able to achieve an 
operating frequency close to the maximum frequency 
possible on the ZYNQ device, but for an 8x8 overlay, it uses 
approximately 52% of the LUTs available while achieving a 
peak throughput of 65 GOPS. The DISO overlay has an 
overhead of 430 LUTs/GOPS, which while significantly less 
than other overlays from the literature [12], [42], still 
represents a very significant hardware utilisation. 

Figure 6. The frequency, throughput and resource usage for different 
size DISO overlays. 

A significant advantage of the coarse-grained DSP-based 
DISO overlay is that it can perform a context switch in just 
45.5μs using just 1137 bytes of configuration data.  

DeCO: A DSP enabled Cone-shaped Overlay: Many of 
the existing overlays use a fully flexible general-purpose 
interconnect which in many cases represents an over-
provision and is not normally required for implementing 
accelerators based on feed-forward pipelined datapaths. 
Instead, a linear array of interconnected FUs was proposed 
[17] to improve resource utilization. Additionally, it was 
observed that the greater majority of these feed-forward 
applications had a triangular (or cone shaped) FU pattern. 
By analysing a number of simple computational kernels, we 
derived a processing pipeline consisting of 20 DSP block 
based FUs and four layers of simple interconnection, as 
shown in Fig. 7. The FU is similar to the DISO FU except 
that the SLICEM shift register LUTs are not needed the 
dataflow through the overlay is self-synchronising. 

Figure 7. The DeCO feed-forward overlay. 

The 16-bit DeCO overlay requires 1368 LUTs, 2348 FFs 
(1032 logic slices) and 20 DSP blocks, with an operating 
frequency of 395 MHz and a peak throughput of 23.7 GOPS. 
This represents an overhead of just 58 LUTs/GOPS (an 
order of magnitude less than the DISO overlay) and just 2-3 
times that when the application is directly implemented on 
FPGA. A hardware context switch can be performed in just 
2μs requiring just 54 bytes of configuration data 

TM Overlay with Linear interconnect: While DeCO 
represents a significant step forward in terms of overlay 
resource efficiency, we also explore low resource TM 
overlays [36] with linear interconnect, to minimize the 
FPGA resource usage. The major advantage of TM overlays 
is that an application kernel can be mapped to fewer FUs, 
reducing resource consumption at the expense of II. 

In the linear TM overlay there is a direct connection 
between FUs. It consists of a streaming data interface made 
up of Distributed RAM (DRAM) acting as a FIFO, which 
feeds into a cascade of time-multiplexed FUs, with another 
DRAM-based FIFO at the output, as shown in Fig. 8. Tasks 
are scheduled to the overlay using ASAP scheduling, which 
allows data flow graph (DFG) nodes from the same 
scheduling time step to be allocated to individual FUs.  

The FU uses the same principle as the iDEA DSP-based 
processor [22], and requires 1 DSP block, 212 LUTs and 
228 FFs and runs at 323 MHz on a Xilinx Zynq. It consists 
of a LUTRAM-based instruction memory (IM) and register 
file (RF), and a DSP-based ALU, as shown in Fig. 9.  
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Figure 8. The TM overlay with linear interconnect 

Cascading 8 FUs into a linear overlay results in a 
resource consumption of 1747 LUTs and 1954 FFs (814 
logic slices) and 8 DSPs, and operates at a frequency of 
286MHz. While this represents a 21% reduction in resource 
utilisation compared to DeCO, it comes at the expense of a 
significant reduction in the throughput and the II. The TM 
overlay has an average throughput of 0.63 GOPS compared 
to an average throughput of 6.1 GOPS for DeCO, 
representing an order of magnitude reduction in throughput. 

VI. Conclusions 
We have examined the use of overlays, a virtual 

abstraction on top of the conventional FPGA fabric, for 
general purpose on-demand application acceleration. We 
examiner a hypervisor-based implementation targeting the 
ZYNQ platform which embedded a DSP-based overlay 
within the FPGA platform for use as a rapidly 
reconfigurable general purpose accelerator under software 
control. Here we saw that even with an efficient DMA 
controller, data transfer, and not the overlay, was the 
bottleneck, clearly showing the benefits of an overlay for 
supporting hardware acceleration of tasks. We presented a 
number of overlays with varying characteristics and 
efficiencies (both in terms of throughput and FPGA resource 
utilisation)  In the future, we plan to investigate techniques 
for overcoming the data communication bottleneck, and 
examine the power and cost benefits of accelerator overlays. 
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