
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/323886213

FPGA Overlays Hardware based Computing for the Masses

Conference Paper · February 2018

DOI: 10.15224/978-1-63248-144-3-12

CITATIONS

0

READS

64

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Architecture Centric Coarse-Grained FPGA Overlays for High Performance Computing View project

Xiangwei Li

Nanyang Technological University

3 PUBLICATIONS 4 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xiangwei Li on 03 April 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/323886213_FPGA_Overlays_Hardware_based_Computing_for_the_Masses?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/323886213_FPGA_Overlays_Hardware_based_Computing_for_the_Masses?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Architecture-Centric-Coarse-Grained-FPGA-Overlays-for-High-Performance-Computing?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiangwei_Li4?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiangwei_Li4?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanyang_Technological_University?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiangwei_Li4?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiangwei_Li4?enrichId=rgreq-82e795b1a8d53c60d24bbdf906e1bca6-XXX&enrichSource=Y292ZXJQYWdlOzMyMzg4NjIxMztBUzo2MTEyNTg4MDE4NTY1MTJAMTUyMjc0Njg2MzM4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

25

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

FPGA Overlays:

Hardware–based Computing for the Masses.
Xiangwei Li, Cheng Fei Phung and Douglas L Maskell

Abstract—The hardware acceleration of compute intensive

applications has definite advantages, particularly in terms of

energy and application latency. Heterogeneous programmable

system-on-chip (SoCs) FPGA devices, which combine general

purpose processors with reconfigurable fabrics, provide a

compelling platform for IoT applications. However, FPGA

devices are constrained due to significant design productivity

issues and a lack of suitable hardware abstraction. For FPGAs

to compete as general purpose computing platforms they must

be better virtualized, as eliminating the need to work with

platform-specific details would make them more accessible to

application developers who are accustomed to software API

abstractions and fast development cycles. In this paper, we

discuss the role of overlay architectures for enabling general

purpose FPGA application acceleration.

Keywords— FPGA, Overlay architecture

I. Introduction
Many of today’s embedded applications, particularly in

the internet of things (IoT) domain, require significant low-
power pre-processing. While some of this processing can be
performed by low power processors, possibly with cloud
offloading, more compute intensive applications, such as
image pre-processing for real-time driver assistance, require
a different approach. Heterogeneous programmable systems
on chip (PSoC) platforms, which tightly couple general
purpose CPUs with reconfigurable FPGA fabric [1], provide
significantly better power/performance characteristics than
high performance CPUs and/or GPUs, particularly within
the tight power budget required by an embedded system.

This reconfigurable computing approach is not new [2],
[3], and while promising has had limited success in the past.
However, the more capable multicore processors in newer
PSoC devices provide the ability to move the focus away
from static (or quasistatic) accelerators to a more software
oriented view, where reconfiguration is a key enabler for
reusing available hardware resources among multiple tasks.
But this requires that the traditional approaches to managing
the execution and scheduling of hardware tasks be re-
examined as they are generally inappropriate and
cumbersome. In addition, the hardware design process is
complex, requiring low-level device expertise and specialist
knowledge of both hardware and software systems, resulting
in major design productivity issues.

This is because there is no suitable abstraction at the
hardware computing level which is able to fully eliminate

Xiangwei Li, Cheng Fei Phung and Douglas L Maskell

School of Computer Science and Engineering, NTU Singapore

Singapore

the reliance on platform-specific detail. The lack of platform
abstraction and the resulting application portability is one of
the main impediments to the adoption of these platforms for
mainstream computing. Enabling the virtualized execution
of software and hardware tasks on PSoC platforms would
make them more accessible to application developers who
are used to software API abstractions and fast development
cycles. Hence we require a revised look at how to
effectively exploit the key advantages of reconfigurable
hardware while abstracting implementation details within a
software-centric processor-based system.

One possible solution is to treat the execution and
management of software and hardware tasks in the same
way, using an OS or hypervisor which treats the FPGA as
just another software-managed task [4], [5]. This enables
more shared use, while ensuring better isolation and
predictability. Complete system run-time management,
including FPGA configuration and inter-process data
communication, has been implemented using a hypervisor
[6] and within the Linux OS [7]. The programmable coarse-
grained hardware abstraction layer (or overlay) which is
mapped to the FPGA, resulted in better application
portability across devices, better design reuse, and rapid
reconfiguration that is orders of magnitude faster than other
reconfiguration approaches on FPGA.

In this paper, we discuss an execution platform based on
a virtual overlay sitting on top of the physical FPGA fabric
of a commercial hybrid FPGA that not only abstracts the
reconfigurable hardware details, such as the logic, memory,
and I/O interfaces and their placement, but also provides
runtime management support in order to facilitate
virtualized execution of software and hardware tasks. This
enables small, often used, sections of code to be mapped to
dedicated hardware accelerators on demand.

The remainder of the paper is organized as follows:
Section II examines some of the barriers that must be
overcome before non-hardware practitioners can fully
embrace FPGA design. Section III introduces the concept of
coarse-grained overlays followed by a description of the two
main types of overlay. Section IV examines the use of
FPGA overlay for general purpose application acceleration
within a hybrid FPGA, while Section V examines the
characteristics and implementation details of some typical
overlays used for application acceleration. Finally, we
conclude in Section VI.

II. Barriers to Mainstream use
of FPGAs

To understand why FPGA devices have not achieved
mainstream adoption among the wider computing
community, it is important to appreciate the differences
between FPGAs and alternative solutions, specifically

26

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

traditional CPUs. The most fundamental difference relates to
how an application is mapped to these platforms. A CPU
provides functionality to execute a compute kernel as a list
of sequential instructions, whereas an FPGA architecture
implements compute kernels by mapping them to fine
grained resources, such as configurable logic blocks, and
medium grained hard DSP blocks, Block RAMs, etc. These
resources are connected via a fine-grained programmable
routing network to create a specialized datapath which
implements the compute kernel. By exploiting parallelism in
the algorithm, significant performance gains are possible.

A. Low Level Hardware Design
The biggest difference between programmable hardware

devices and other hardware implementations, such as ASIC
devices, is that the former are user configurable, and in the
case of SRAM-based FPGAs, dynamically reconfigurable.
This allows the FPGA to adapt to changing processing
requirements, thus better utilizing the FPGA resources,
while providing a more software centric approach to
hardware design. The typical flow starts with a large
software application, which is profiled and partitioned into
hardware and software components, with the resulting
hardware accelerator running on the FPGA fabric and the
remaining software running on the CPU. Significant
performance improvements are possible due to hardware
parallelization and pipelining even though the FPGA may
run at a much slower clock speed than the CPU.

The hardware accelerator is then typically designed at a
low level of abstraction (register-transfer-level (RTL)) to
achieve an efficient implementation. This can consume
significant time and make design reuse difficult when
compared to a similar software only design. The designer
manually converts the compute kernel into a fully pipelined
datapath, specified using a hardware description language
(HDL) such as Verilog or VHDL. The detailed structure of
the datapath and the control needed for reading inputs from
memories into buffers, stalling the datapath when buffers are
full or empty, writing outputs to memory, etc., must be
defined. In FPGA, a datapath implementing just several
lines of C code may require 2-3 orders of magnitude more
lines of HDL code, but results in much better performance
by pipelining and exploiting parallelism. However this
performance comes at the cost of significant design effort.

High-level synthesis (HLS) has been widely adopted
by EDA vendors to address design productivity. HLS has
helped to raise the level of programming abstraction from
RTL to high level languages, such as C or C++, allowing
designers to focus on high-level functionality instead of low-
level details. However, low-level design effort is often still
required to achieve the desired performance, making FPGA
design difficult for non-experts. Also, while HLS tools have
simplified the design process, the back-end flow
(specifically the FPGA place and route) requires very long
compilation times, particularly for large designs, further
contributing to a lack of productivity and the main-stream
adoption of FPGAs. In many cases, the time required to
change an FPGA configuration limits hardware accelerators
to predesigned static (fixed) implementations, negating the
fundamental benefit of FPGAs.

Additionally, FPGA designs do not necessarily port well
to the next hardware generation, making reconfigurable

systems more difficult to work with. The designer must
make a number of decisions, such as how to best fit the
application to the device, including the datapath structure
and the amount of parallelism. Applications are normally
optimized for a specific target device, and are unable to
execute on a smaller device or cannot take full advantage of
the additional resources on a larger device.

B. Reconfiguration Latency
As mentioned earlier, SRAM-based FPGAs are able to

partially and dynamically reconfigure the functionality of
the FPGA fabric. However, despite the popularity and
inherent capability of FPGAs for partial reconfiguration,
whereby the FPGA operation is dynamically adapted to
changing application requirements, this feature is not well
supported by FPGA vendors and is hampered by slow
reconfiguration times, poor CAD tool support, and large
configuration file sizes. These issues make dynamic
reconfiguration difficult and inefficient, resulting in most
FPGAs being used with just a single configuration.

Dynamic partial reconfiguration (DPR) reduced the
configuration time by allowing a smaller region of the
FPGA fabric to be dynamically reconfigured at runtime.
This provided a way of virtualizing the FPGA to allow the
implementation of applications that are larger than the
FPGA. DPR improved reconfiguration performance [8],
however the efficiency of the traditional design approach for
DPR is heavily impacted by how a design is partitioned and
floor planned [9], tasks that again require FPGA expertise.
Furthermore, the commonly used configuration mechanism
is highly sub-optimal in terms of throughput [10]. Despite
numerous efforts in reducing reconfiguration times and
improving CAD tool support for dynamic reconfiguration of
the FPGA fabric [11], [8], the implementation of rapidly
reconfigurable hardware accelerators is still difficult and
time consuming with application kernel swap times orders
of magnitude more than that of a CPU context switch.

III. Coarse-Grained Overlays
Coarse-grained reconfigurable overlays implemented on

top of a commercial FPGA devices, as shown in Fig. 1, have
recently been explored as a means for addressing some of
the problems seen with established FPGA-based hardware
design. These overlays allow coarse-grained components,
specifically the functional units (FUs) and interconnect to be
modified at runtime according to application requirements.
Coarse-grained overlays have several potential advantages,
including: improved designer productivity, better design
portability, software-like programming and fast application
switching. This is because programs can be compiled to the
overlay several orders of magnitude faster than that for the
fine grained FPGA on which the overlay is implemented.
That is, instead needing a full cycle through the FPGA
vendor tools, overlay architectures present a simpler
problem, that of programming an interconnected array of
FUs. However, overlays are not intended to replace HLS
tools and vendor implementation tools and are instead
intended to support FPGA usage models where
programmability, abstraction, resource sharing, fast
compilation, and design productivity are critical issues.

27

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

Figure 1. A course-grained overlay on top of a fine-grained FPGA.

Overlays come in many forms, with the majority falling
within one of just two classes: spatially configured (SC) and
time multiplexed (TM), with both the FU and interconnect
also falling within one of these two categories.

A. Spatially Configured Overlays
SC overlays fully unroll the computational kernel and

allocate each kernel operation to an individual FU such that
an FU executes a single arithmetic operation and data is
transferred over a dedicated point-to-point link between
FUs. That is, both the FU and the interconnect are fixed
while a compute kernel executes. Pipelining can then be
used, both between and within FUs, to provide high
throughput data computations which result in a fully
pipelined, throughput oriented programmable datapath
executing one kernel iteration per clock cycle. Thus an SC
overlay has an initiation interval (II) of one.

SC overlays are usually characterised by their
interconnect type, with the most common being: island style
(IS) [12], [13], nearest neighbour (NN) [14], and to a lesser
extent linear interconnect [15], [16], [17]. However, many
IS and NN connected overlays suffer from very high FPGA
resource overheads due to the interconnect network
complexity, and are unsuitable for large compute kernels
due to the limited size of the overlay that can be mapped
onto the FPGA fabric. However, SC overlays do have a
number of advantages, such as the ability to exploit larger
FPGAs to deliver scalable performance for data-parallel and
throughput oriented applications. They are able to maintain
extremely high throughput by employing deep pipelining
within the architecture, as well as having drastically reduced
compilation times and configuration data sizes due to the
requirement for just one instruction per functional unit. But
this flexibility comes at a cost in terms of area and
performance overheads. Hence, a significant amount of
research effort has recently been aimed at reducing area
overheads and improving performance.

B. Time-Multiplexed Overlays
TM overlays, on the other hand, are able to change their

behaviour at each clock cycle, thereby reusing the resources
allocated to the FU and interconnect. However, this
multiplexing of the resource leads to a higher II and hence a
reduced throughput.

Most successful TM overlays are based on soft
processors, and include single-issue, multi-threaded and
parallel processors. Single-issue processors, such as Micro-
Blaze [18], Nios II [19], RISC-V [20] and Leon-4 [21]

provide the benefits of software programmability and
hardware re-usage. However, compared to hard processors
and dedicated FPGA accelerators, they have significantly
worse power and performance characteristics and may not
meet the requirements of high speed applications. To
improve power consumption and throughput, smaller and
faster processor architectures, such as the iDEA processor
[22], have been proposed. Examples of multi-threaded and
parallel processors include: CUSTARD [23], Octavo [24]
and SIMD-Octavo [25], The VectorBlox MXP soft vector
processor [26] and the TILT VLIW processor [27].

Current processor-based overlay research is exploring
multi-core systems of soft processors with efficient routing
to improve processor throughput. Examples include GRVI
Phalanx [28], a massively parallel overlay based on the
RISC-V processor and the Hoplite NOC [29] which mapped
1680 RISC-V cores onto an UltraScale+ VU9P, and the 120-
core microAptiv MIPS Overlay targeting the Stratix V GX
FPGA [30]. These overlays have the advantage of a well-
known, well-designed ISA which makes them easy to use.

An alternative solution is to build arrays of customized
TM FUs and interconnect on the FPGA, similar to CGRAs
[31]. As with SC overlays, array-based TM overlays mainly
utilise IS [12], [13], NN [32], [33] and to a lesser extent
linear interconnect [3], [9], for connecting between the TM
FUs. Again, as with SC overlays, the overhead of the
interconnect network, particularly for IS and NN
interconnects, contribute to a significant FPGA resource
utilization. Examples of CGRA-like TM overlays include:
CARBON [34], reMORPH [32], SCGRA [33], the MINs
Overlay [35] and a TM DSP-based overlay with linear
interconnect [36]. Many of these overlays do not support
fast application context switching as they rely on either full
or partial reconfiguration at runtime when the compute
kernel needs to change.

CGRA-based overlays aimed at addressing FPGA design
productivity have only appeared in the last 6 to 8 years, but
have already shown potential in terms of speed and area-
efficiency. This is likely to improve as more and more
coarse-grained modules, such as DSP blocks and BRAMs,
are fabricated in modern FPGAs.

IV. Application Acceleration on
FPGA Overlays

These overlays can then be integrated into a complete
system for application acceleration. In this section, we will
examine two possible scenarios.

Hypervisor Control: The first uses a modified
CODEZERO hypervisor [5], [6] running on the host
processor (in this case the dual-core ARM processor on the
Xilinx Zynq FPGA) to provide run-time management,
including overlay configuration and data communication, as
in Fig. 2. This provides a significant advantage over
conventional FPGA accelerators as it now allows the use of
multiple independent accelerator kernels, which can be very
quickly mapped to the overlay on demand, with software-
like context switch times, as the application runs. Due to the
long FPGA configuration times, conventional FPGA
accelerators usually require all accelerator cores to be
present on the FPGA fabric. This results in the need for a
large FPGA device, negating any power and cost advantages

28

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

associated with the use of these hardware accelerators. Even
if using dynamic partial reconfiguration, the delay in
swapping between accelerator implementations, is much too
slow for many applications.

Figure 2. The hypervisor based overlay on Zynq.

The ARM-based hypervisor was able to support multiple
hardware and software tasks running in different hypervisor
containers. The FPGA bitstream describing the 5×5 overlay
of [13], the four dual-port 512×64-bit input BRAMs, the
single dual-port 512×64-bit output BRAM, the configuration
buffer and an FPGA-based Xilinx softcore DMA engine
connected to the 64-bit HP port, described in Fig. 2, are
loaded (once only) at power-on as the hypervisor boots. The
total configuration time is approximately 31ms. Multiple
applications are then able to be scheduled to the overlay
which has a configuration size of 287 Bytes (independent of
the application kernel). The overlay is configured using the
configuration buffer, via the GP port, and takes 11.5μs.

The execution profile for tasks running on the overlay is
shown in Fig. 3. In this case, the first kernel requires 20.5μs
for input data transfer, while data processing takes 2μs and
output data transfer takes a further 5.12μs. This data transfer
process repeats until the task is finished or the kernel is
preempted. Upon kernel preemption, the hypervisor unlocks
the overlay, performs a hardware context switch and locks it
for the next task, which takes 5.4μs (the worst case when the
two applications are in containers which are both running on
the same core). The hypervisor then schedules the second
kernel to the overlay, which again requires 287 Bytes to be
sent to the configuration buffer and takes 11.5μs. Here, the
second kernel has an input data transfer which takes 10.25μs,

while data processing takes 2μs and output data transfer
takes 5.12μs. Again, the data transfer process repeats until
the task is finished or the FFT kernel is preempted.

From this simple example, it can be seen that the time to
configure the overlay, perform a hardware context switch,
and reconfigure the overlay for the next kernel is relatively
insignificant (assuming that multiple data packets would be
processed before a kernel pre-emption). However, this data
transfer/process/transfer cycle reveals that the DMA based
data transfer is a major bottleneck. This is using a relatively
fast FPGA soft core DMA engine which is 4–5× faster than
the ARM processor’s hard DMA. This transfer time could
be improved by replicating DMA controllers and using all
four HP ports, overlapping communication and computation,
or by implementing a streaming interface directly to/from
the FPGA using PCIe interfaces. However, the important
point to take away is that the overlay is not the bottleneck,
and is now able to adequately support general purpose
hardware acceleration on FPGA. This has been achieved by
removing the need for dynamic reconfiguration of the
overlay (as is needed by many of the other overlays
proposed in the literature).

The PYNQ Project: Python productivity for Zynq
(PYNQ) [37] is an open-source project which provides a
simple platform independent method to design high
performance embedded applications on the Zynq FPGA. It
consists of API accessible reconfigurable libraries (or
overlays) which are programmable using Python in a
browser based Jupyter Notebook.

PYNQ has been quickly adopted by the reconfigurable
computing research community. A framework for SPARK
execution on PYNQ has been proposed to accelerate
machine learning, achieving up to a 11x speedup compared
to the application running on just the ARM processor [38].
PYNQ was used to implement a deep recurrent neural
network using the AXI Stream interface, which achieved a
throughput of 20 Giga operations per second (GOPS) [39].
Dynamic partial reconfiguration of PYNQ overlays resulted
in a 40% reduction in the resource consumption [40].

V. Overlay Case Studies
A number of different FPGA overlays developed by the

research group which can be integrated into the hypervisor
based ZYNQ system for supporting hardware application
acceleration are described.

DISO: A DSP block based Island-Style Overlay: An
island-style overlay using Xilinx DSP48E1 primitives to
implement a programmable FU in an efficient overlay
architecture targeting data-parallel compute kernels was
presented in [41]. The overlay consists of tiles and borders,

Figure 3. The execution profile of tasks on overlay under hypervisor control.

29

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

where a tile contains virtual routing resources and an FU, as
shown in Fig. 4. The simple 2×2 overlay of Fig. 4, requires 4

FUs, 9 SBs and 8 CBs. Extrapolating, an N×N overlay
requires N

2
 FUs, (N +1)

2
 SBs and N

2
 +2N CBs.

 (a) The 2x2 overlay (b) The tile architecture

Figure 4. The DISO overlay architecture.

The 16-bit DSP-based FU consists of DSP block, MUX
based reordering logic and variable length synchronization
logic for balancing pipeline latencies, as shown in Fig. 5.
The FU has 4 input and 4 output ports. The reordering logic
is a mux-based 4x4 crossbar switch providing connectivity
between the FU inputs and the DSP block. The variable
length synchronization logic is implemented using SLICEM
shift register LUTs (SRLs) for maximum performance.

Figure 5. The DISO FU.

The operating frequency, peak throughput and FPGA
resource usage for different size overlays on the ZYNQ
device are given in Fig. 6. DISO is able to achieve an
operating frequency close to the maximum frequency
possible on the ZYNQ device, but for an 8x8 overlay, it uses
approximately 52% of the LUTs available while achieving a
peak throughput of 65 GOPS. The DISO overlay has an
overhead of 430 LUTs/GOPS, which while significantly less
than other overlays from the literature [12], [42], still
represents a very significant hardware utilisation.

Figure 6. The frequency, throughput and resource usage for different
size DISO overlays.

A significant advantage of the coarse-grained DSP-based
DISO overlay is that it can perform a context switch in just
45.5μs using just 1137 bytes of configuration data.

DeCO: A DSP enabled Cone-shaped Overlay: Many of
the existing overlays use a fully flexible general-purpose
interconnect which in many cases represents an over-
provision and is not normally required for implementing
accelerators based on feed-forward pipelined datapaths.
Instead, a linear array of interconnected FUs was proposed
[17] to improve resource utilization. Additionally, it was
observed that the greater majority of these feed-forward
applications had a triangular (or cone shaped) FU pattern.
By analysing a number of simple computational kernels, we
derived a processing pipeline consisting of 20 DSP block
based FUs and four layers of simple interconnection, as
shown in Fig. 7. The FU is similar to the DISO FU except
that the SLICEM shift register LUTs are not needed the
dataflow through the overlay is self-synchronising.

Figure 7. The DeCO feed-forward overlay.

The 16-bit DeCO overlay requires 1368 LUTs, 2348 FFs
(1032 logic slices) and 20 DSP blocks, with an operating
frequency of 395 MHz and a peak throughput of 23.7 GOPS.
This represents an overhead of just 58 LUTs/GOPS (an
order of magnitude less than the DISO overlay) and just 2-3
times that when the application is directly implemented on
FPGA. A hardware context switch can be performed in just
2μs requiring just 54 bytes of configuration data

TM Overlay with Linear interconnect: While DeCO
represents a significant step forward in terms of overlay
resource efficiency, we also explore low resource TM
overlays [36] with linear interconnect, to minimize the
FPGA resource usage. The major advantage of TM overlays
is that an application kernel can be mapped to fewer FUs,
reducing resource consumption at the expense of II.

In the linear TM overlay there is a direct connection
between FUs. It consists of a streaming data interface made
up of Distributed RAM (DRAM) acting as a FIFO, which
feeds into a cascade of time-multiplexed FUs, with another
DRAM-based FIFO at the output, as shown in Fig. 8. Tasks
are scheduled to the overlay using ASAP scheduling, which
allows data flow graph (DFG) nodes from the same
scheduling time step to be allocated to individual FUs.

The FU uses the same principle as the iDEA DSP-based
processor [22], and requires 1 DSP block, 212 LUTs and
228 FFs and runs at 323 MHz on a Xilinx Zynq. It consists
of a LUTRAM-based instruction memory (IM) and register
file (RF), and a DSP-based ALU, as shown in Fig. 9.

30

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

Figure 8. The TM overlay with linear interconnect

Cascading 8 FUs into a linear overlay results in a
resource consumption of 1747 LUTs and 1954 FFs (814
logic slices) and 8 DSPs, and operates at a frequency of
286MHz. While this represents a 21% reduction in resource
utilisation compared to DeCO, it comes at the expense of a
significant reduction in the throughput and the II. The TM
overlay has an average throughput of 0.63 GOPS compared
to an average throughput of 6.1 GOPS for DeCO,
representing an order of magnitude reduction in throughput.

VI. Conclusions
We have examined the use of overlays, a virtual

abstraction on top of the conventional FPGA fabric, for
general purpose on-demand application acceleration. We
examiner a hypervisor-based implementation targeting the
ZYNQ platform which embedded a DSP-based overlay
within the FPGA platform for use as a rapidly
reconfigurable general purpose accelerator under software
control. Here we saw that even with an efficient DMA
controller, data transfer, and not the overlay, was the
bottleneck, clearly showing the benefits of an overlay for
supporting hardware acceleration of tasks. We presented a
number of overlays with varying characteristics and
efficiencies (both in terms of throughput and FPGA resource
utilisation) In the future, we plan to investigate techniques
for overcoming the data communication bottleneck, and
examine the power and cost benefits of accelerator overlays.

Acknowledgment
This research is supported by the Singapore Ministry of

Education under research grants MOE_RG183/14 and
MOE2017-T2-1-002.

References

[1] S. Ahmad, V. Boppana, I. Ganusov, V. Kathail, V. Rajagopalan, and

R. Wittig, "A 16-nm multiprocessing system-on-chip
fieldprogrammable gate array platform," IEEE Micro, vol. 36, no. 2,
pp. 48–62, 2016.

[2] R. Tessier, K. Pocek, and A. DeHon, "Reconfigurable computing
architectures, " Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354,
2015.

[3] S. M. Trimberger, "Three ages of FPGAs: A retrospective on the first
thirty years of FPGA technology," Proceedings of the IEEE, vol. 103,
no. 3, pp. 318–331, 2015.

[4] N. W. Bergmann, S. K. Shukla, and J. Becker, "QUKU: a duallayer
reconfigurable architecture," ACM Transactions on Embedded
Computing Systems (TECS), vol. 12, no. 1s, pp. 63:1–63:26, Mar.
2013.

[5] A. K. Jain, K. D. Pham, J. Cui, S. A. Fahmy, and D. L. Maskell,
"Virtualized execution and management of hardware tasks on a hybrid
ARM-FPGA platform," J. Signal Process. Syst., vol. 77, no. 1–2, pp.
61–76, 2014.

[6] K. D. Pham, A. K. Jain, J. Cui, S. A. Fahmy, and D. L. Maskell,
"Microkernel hypervisor for a hybrid ARM-FPGA platform," in
Proceedings of the International Conference on Application-Specific
Systems, Architecture Processors (ASAP), 2013, pp. 219–226.

[7] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou, "A fully pipelined
and dynamically composable architecture of CGRA," in IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM),
2014, pp. 9–16.

[8] K. Vipin and S. A. Fahmy, "Mapping adaptive hardware systems with
partial reconfiguration using CoPR for Zynq," in Proceedings of the
NASA/ESA Conference on Adaptive Hardware and Systems (AHS),
June 2015, pp. 1–8.

[9] K. Vipin and S. A. Fahmy, "Architecture-aware reconfiguration-
centric floorplanning for partial reconfiguration," in Proceedings of
the International Symposium on Applied Reconfigurable Computing
(ARC), 2012, pp. 13–25.

[10] K. Vipin and S. A. Fahmy, "A high speed open source controller for
FPGA partial reconfiguration," in Proceedings of International
Conference on Field Programmable Technology (FPT), 2012, pp. 61–
66.

Figure 9. The DSP block based time-multiplexed functional unit.

31

Proc. of the Eighth International Conference On Advances in Computing, Electronics and Electrical Technology - CEET 2018
 Copyright © Institute of Research Engineers and Doctors. All rights reserved.
 ISBN: 978-1-63248-144-3 doi: 10.15224/ 978-1-63248-144-3-12

[11] K. Vipin and S. A. Fahmy, "ZyCAP: Efficient partial reconfiguration

management on the Xilinx Zynq, " IEEE Embedded Systems Letters,
vol 6(3), pp. 41–44, 2014.

[12] G. Stitt and J. Coole, "Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation,” IEEE ESL, vol. 3(3), pp. 81–84,
2011.

[13] A. K. Jain, S. A. Fahmy, and D. L. Maskell, "Efficient Overlay
architecture based on DSP blocks, " in IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM), 2015, pp. 25–28.

[14] D. Capalija and T. S. Abdelrahman, "A high-performance overlay
architecture for pipelined execution of data flow graphs,” in
Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2013, pp. 1–8.

[15] J. Coole and G. Stitt, "Adjustable-cost overlays for runtime
compilation, " in IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), 2015, pp. 21–24.

[16] D. Capalija and T. Abdelrahman, "Towards synthesis-free JIT
compilation to commodity FPGAs,” in IEEE Symposium on FPGAs
for Custom Computing Machines (FCCM), 2011, pp. 202-205.

[17] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmyb
"DeCO: A DSP block based FPGA accelerator overlay with low
overhead interconnect," in IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 2016, pp. 1-8.

[18] Xilinx, "Microblaze processor reference guide,” 2017.

[19] Altera, "Nios II processor reference handbook,” 2016.

[20] A. Waterman. Design of the RISC-V Instruction Set Architecture.
University of California, Berkeley, 2016.

[21] Cobham Gaisler AB, GRLIP IP Core User’s Manual, 2017.

[22] H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L. Maskell, "The iDEA
DSP block-based soft processor for FPGAs," ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 7, no. 3, pp.
19:1– 19:23, 2014.

[23] R. Dimond, O. Mencer, and W. Luk, "CUSTARD-a customisable
threaded fpga soft processor and tools,” in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL), 2005, pp. 1–6.

[24] C. E. LaForest and J. G. Steffan, "Octavo: an fpga-centric processor
family, " in Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA), 2012, pp. 219–228.

[25] C. E. Laforest and J. H. Anderson, "Microarchitectural comparison of
the MXP and Octavo soft-processor FPGA overlays,"ACM TRETS,
vol. 10, no. 3, p. 19, 2017.

[26] A. Severance and G. G. Lemieux, "Embedded supercomputing in
fpgas with the vectorblox mxp matrix processor, " in Proceedings of
the International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2013, pp. 1–10.

[27] K. Ovtcharov, I. Tili, and J. G. Steffan, "Tilt: a multithreaded vliw
soft processor family," in Proceedings of the International Conference
on Field Programmable Logic and Applications (FPL), 2013, pp. 1–4.

[28] J. Gray. "Grvi phalanx: A massively parallel RISC-V FPGA
accelerator accelerator,” in IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 2016, pp. 17–20.

[29] N. Kapre and J. Gray. “Hoplite: Building austere overlay NoCs for
FPGAs,” in Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), 2015, pp. 1–8.

[30] K. HB Chethan, P. Ravi, G. Modi, and N. Kapre. "120-core
microAptiv MIPS Overlay for the Terasic DE5-NET FPGA board." In
Proceedings of the International Symposium on Field-Programmable
Gate Arrays (FPGA), 2017, pp. 141–146.

[31] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins.
"ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix," in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL), 2003, pp. 61–70.

[32] K. Paul, C. Dash, and M. S. Moghaddam. "reMORPH: a runtime
reconfigurable architecture," In Euromicro Conference on Digital
System Design (DSD), 2012, pp. 26–33.

[33] C. Liu, C. L. Yu, and H. K.-H. So. "A soft coarse-grained
reconfigurable array based high-level synthesis methodology:
Promoting design productivity and exploring extreme FPGA
frequency," in IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM), 2013, pp. 228–228.

[34] A. D. Brant, "Coarse and fine grain programmable overlay
architectures for FPGAs," PhD thesis, University of British Columbia,
2013.

[35] R. Ferreira, J. G. Vendramini, L. Mucida, M. M. Pereira, and L.
Carro, "An FPGA-based heterogeneous coarse-grained dynamically
reconfigurable architecture," in Proceedings of the 14th International
Conference on Compilers, architectures and synthesis for embedded
systems (CASES), 2011, pp. 195–204.

[36] X. Li, A. K. Jain, D. L. Maskell and S. A. Fahmy, "A Time-
Multiplexed FPGA Overlay with Linear Interconnect," to appear in
Proceedings of the Design, Automation and Test in Europe
Conference (DATE), 2018.

[37] Pynq: Pyhton productivity for Zynq. Technical report, 2017.

[38] K. Elias, I. Stamelos, C. Kachris, and D. Soudris, "Spark acceleration
on FPGAs: A use case on machine learning in Pynq," in Proceedings
of the international conference on Modern Circuits and Systems
Technologies (MOCAST), 2017, pp. 1–4.

[39] Y. Hao, , and S. Quigley, "The implementation of a Deep Recurrent
Neural Network Language Model on a Xilinx FPGA," arXiv preprint
arXiv:1710.10296 (2017).

[40] J. Benedikt, P. Zimprich, and M. Hübner, "A dynamic partial
reconfigurable overlay concept for PYNQ," in Proceedings of the
International Conference on Field Programmable Logic and
Applications (FPL), 2017, pp. 1–4.

[41] A. K. Jain, X. Li, S. A. Fahmy, and D. L. Maskell, "Adapting the
DySER architecture with DSP blocks as an Overlay for the Xilinx
Zynq," ACM SIGARCH Computer Architecture News vol. 43(4), pp.
28–33, 2016.

[42] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K.
Sankaralingam, and C. Kim, "DySER: Unifying functionality and
parallelism specialization for energy-efficient computing," IEEE
Micro, vol. 32, no. 5, pp. 38–51, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/323886213

